-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcsf_predict.m
128 lines (117 loc) · 4.49 KB
/
csf_predict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
%CSF_PREDICT - Denoising and deconvolution inference for (cascades of) shrinkage fields.
% OUT = CSF_PREDICT(M,Y,K) returns a cell array of denoising/deconvolution results for
% each stage of the shrinkage field cascade M. Y is the corrupt input image, and K
% the blur kernel (point spread function) when deconvolution is performed.
% Author: Uwe Schmidt, TU Darmstadt ([email protected])
%
% This file is part of the implementation as described in the CVPR 2014 paper:
% Uwe Schmidt and Stefan Roth. Shrinkage Fields for Effective Image Restoration.
% Please see the file LICENSE.txt for the license governing this code.
function out = csf_predict(m,y,k)
%% check for GPU
use_gpu = false;
try
% note: first run on GPU always takes longer than subsequent runs
gpu = gpuDevice; if ~gpu.DeviceSupported, error; end %#ok
use_gpu = true;
transfer = @(d) gpuArray(single(d));
retain = @gather;
fprintf('Using GPU[%d] ''%s'' (free memory: %.0fMB)\n', gpu.Index, gpu.Name, gpu.FreeMemory/1024^2)
catch
[transfer,retain] = deal(@(d)d);
end
%% setup
tic
y = transfer(y);
m.shrink = rbfmix.from_struct(m.shrink,use_gpu); % create @rbfmix objects (computes LUTs)
if m.is_deblurring
assert(exist('k','var') ~= 0, 'kernel not provided')
assert(all(mod(size(k),2)==1), 'kernel must be odd-sized')
kdims = size(k);
k_otf = transfer(psf2otf(k,size(y)+kdims-1));
k_alpha = train.edgetaper_alpha(transfer(k),size(y)+kdims-1);
%
bndry = (kdims-1)/2;
pad = @(x) taper(padarray(x,bndry,'replicate','both'),k,k_otf,k_alpha,3);
y = pad(y);
Kty = real(ifft2(conj(k_otf).*fft2(y))); % same as imfilter(y,k,'same','circular','corr');
KtK_ = abs(k_otf).^2;
else
bndry = [10,10];
pad = @(x) padarray(x,bndry,'replicate','both');
y = pad(y);
Kty = y;
KtK_ = 1;
end
crop = @(x) x(1+bndry(1):end-bndry(1),1+bndry(2):end-bndry(2));
out = cell(1,m.nstages);
% pre-compute some things
m.imdims = size(y);
m = circpadidx(m,transfer);
m.zeroimg = transfer(zeros(m.imdims));
% store filters for all stages
[f,f_tr] = deal(cell(size(m.f)));
for i = 1:numel(f)
f{i} = transfer(m.f{i});
f_tr{i} = transfer(flipud(fliplr(m.f{i}))); %#ok
end
%% inference
x = y; % initial result is input image
fprintf('- Setup done, elapsed time = %5.2fs\n', toc)
for i = 1:m.nstages
[m.f,m.f_tr] = deal(f(:,i),f_tr(:,i));
x = predict(x, m.lambda(i), m.shrink(:,i), Kty, KtK_, m);
x = crop(x); out{i} = retain(x); x = pad(x);
fprintf('- Stage %d done, elapsed time = %5.2fs\n', i, toc)
end
end
% actual inference, computes Eq. (10) of the paper
function x = predict(x, lambda, shrink, Kty, KtK_, s)
top = lambda * Kty;
bottom = lambda * KtK_;
for j = 1:s.nfilters
bottom = bottom + abs(mypsf2otf(j,s)).^2;
fx = filter_circ_conv(x,s,j);
z = reshape(shrink(j).eval(fx(:)'),s.imdims);
fz = filter_circ_corr(z,s,j);
top = top + fz;
end
clear fx z fz % free (GPU) memory
top = fft2(top);
x = real(ifft2( top ./ bottom ));
end
% GPU-friendly 2D convolution, results equivalent to imfilter(x,s.f{i},'same','circular',{'conv','corr'});
function x = filter_circ_conv(x,s,j), x = conv2(x(s.circpadidx{j}),s.f{j}, 'valid'); end
function x = filter_circ_corr(x,s,j), x = conv2(x(s.circpadidx{j}),s.f_tr{j},'valid'); end
% edge tapering to alleviate artifacts from circular boundary handling
function x = taper(x,k,k_otf,k_alpha,ntapers) %#ok
for i = 1:ntapers
% basically equivalent to x = edgetaper(x,k);
blurred = real(ifft2(fft2(x).*k_otf));
x = k_alpha.*x + (1-k_alpha).*blurred;
end
end
% compute circular padding indices for all filters (assume same sizes for all stages)
% used for 2D convolution and mypsf2otf
function s = circpadidx(s,transfer)
idx = reshape(1:prod(s.imdims),s.imdims);
s.circpadidx = cell(1,s.nfilters);
fdims = size(s.f{1});
if fdims(1) == fdims(2)
% learned filters (assume that all have same size)
s.circpadidx(:) = {transfer(padarray(idx,(fdims-1)/2,'circular','both'))};
else
% pairwise filters (different sizes)
for i = 1:s.nfilters
s.circpadidx{i} = transfer(padarray(idx,(size(s.f{i})-1)/2,'circular','both'));
end
end
end
% optimized and GPU-friendly psf2otf, basically equivalent to psf2otf(s.f{j},s.imdims)
function otf = mypsf2otf(j,s)
fdims = size(s.f{j});
psf = s.zeroimg;
idx_circ = s.circpadidx{j}(1:fdims(1),1:fdims(2));
psf(idx_circ) = s.f{j};
otf = fft2(psf);
end