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A B S T R A C T

Technology and policy implications of global energy and emissions scenarios can be difficult to analyze because
underlying assumptions and drivers of scenarios are rarely made explicit. This article documents methods for
standardizing emissions scenario results that can be applied to virtually any scenario, enabling more meaningful
comparisons among scenarios than has been possible in the past.

This approach uses charts showing the dynamics and effects of emission drivers, mitigation technologies, and
policies. Applying these methods will enable the policy and research communities to better understand the
implications of scenarios, and help analysts learn more rapidly. As a matter of good practice, modelers should
create decompositions like the ones put forth in this article, policy makers should request them, and funders of
scenario analysis and sponsors of model comparisons should support the application and further development of
such tools.

1. Introduction

After the COP23 meetings in Bonn in November 2017, the policy
community is increasing its focus on reducing greenhouse gas (GHG)
emissions quickly and efficiently. To understand the range of possible
solutions, scientists have for many years used Integrated Assessment
Models, which attempt to assess the costs and benefits of climate action.
Many researchers have raised analytical concerns about these models
and associated methods (Ackerman et al., 2009; DeCanio, 2003;
Koomey 2012, 2013; Pindyck 2013, 2017; Rosen and Guenther, 2015)
but they provide a systematic way to track the implications of possible
scenarios, and we'll no doubt need accounting tools like them to explore
future scenarios that are potentially promising.

Energy scenarios explore a range of conditions possible in an in-
herently uncertain future, including the responses to policy interven-
tions that could stabilize atmospheric greenhouse gas concentrations
(Riahi et al., 2017). Because the future is deeply uncertain, it is ap-
propriate to analyze any single energy and emissions scenario in the
context of other cases, such as a family of scenarios generated by a
single model (WBGU, 2004), a set of models generating a common
scenario (Weyant, 2004), or a diverse selection of scenarios in the lit-
erature (Hamrin et al., 2007). To compare the insights within and be-
tween these types of studies, an effective and consistent framework for

interpretation is essential (Hummel, 2006).
Unfortunately, different practices for reporting scenarios in the lit-

erature make it difficult to compare results and infer their meaning.
Policy analysts, who are often a primary audience for scenario results,
then face the challenge of interpreting and evaluating a steady stream
of studies based on different models and baseline assumptions. The
importance of addressing this and related challenges has led to calls for
greater transparency, disclosure, and self-examination by the energy
modeling community (for example, Koomey et al. (2003) and
Pfenninger (2017)).

This article describes one technique with minimal data require-
ments that can be used to illuminate technology and policy implications
of global, regional, or country-level energy and emissions scenarios for
a policy audience. This technique uses “driver dashboards” of line
graphs that make explicit the relative role of key drivers of emissions
over time in a particular scenario. After reviewing these dashboards, a
researcher can put the quantitative results of each scenario into context
and compare the results to historical trends and to other scenarios
presented in the same framework.

The factors in the first dashboard include population growth, eco-
nomic activity, final and primary energy consumption, and total fossil
carbon dioxide emissions from the energy sector. The second dashboard
shows ratios of these terms. The third dashboard displays total
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projected energy sector emissions as well as emissions and reductions
from biomass sequestration, land use, industrial non-energy CO2

emissions, and other warming agents. Supplemental graphs yield ad-
ditional insight.

To describe and demonstrate the utility of this interpretive tech-
nique, this article first reviews a commonly used method for scenario
decomposition (the Kaya identity) for the energy sector and then de-
scribes why an expanded version of this method is required. Section 3
describes in more detail methods for creating such an expanded de-
composition. Next, the article expands the analysis further to include
sources of emissions reductions outside the energy sector. It then de-
scribes use cases for such decompositions, focuses on limitations of the
analysis, suggests areas of future research, and summarizes the con-
clusions that emerge from this analysis.

2. Building on a familiar concept: the Kaya Identity

The decomposition presented here is adapted and expanded from a
well-established convention in emissions scenario analysis known as the
Kaya Identity (Kaya, 1989), which is commonly used to decompose
drivers of greenhouse gas emissions in the energy sector. As many re-
searchers have realized over the years, the Kaya identity as it was ori-
ginally introduced is incomplete. This section reviews the original Kaya
Identity and how it has been used (and altered) in the past, then
modifies and expands the decomposition to correct for the issues in
earlier formulations.

2.1. Overview of the Kaya Identity

The Kaya Identity illustrates the key drivers for fossil carbon dioxide
emissions from the energy sector. This identity decomposes carbon
emissions as a product of aggregate wealth, energy intensity of eco-
nomic activity, and carbon intensity of the energy supplied. As origin-
ally presented (Kaya, 1989), it reads as shown in Equation (1):

=Carbon emissions E
GNP

C
E

GNP (1)

where

GNP= gross national product, a measure of economic activity;
E

GNP
=primary energy intensity per dollar of GNP, and

C
E
=carbon intensity of primary energy production

Professor Kaya presented this equation to help understand the im-
plications of history and future scenarios in a simple “back of the en-
velope” way.

In most uses of this equation, the order of the terms is switched, so
that aggregate wealth is first, energy intensity is next, and carbon di-
oxide intensity (rather than carbon intensity) of primary energy sup-
plied is third (IPCC, 2014, p.368). Most analysts split the aggregate
wealth term into terms focused on population and economic activity
per person, which leads to the more familiar “four-factor” Kaya identity
in Equation (2) (note different variable abbreviations than in Equation
(1)):

=Carbon dioxide emissions P GWP
P

PE
GWP

C
PE (2)

where

P is population;
GWP is gross world product, a measure of economic activity;
PE is primary energy, including conversion and energy transmission
losses;
C is total net carbon dioxide emitted from the primary energy re-
source mix;

GWP
P

is the average income per person;
PE

GWP
is the primary energy intensity of the economy; and

C
PE

is the net carbon dioxide intensity of supplying primary energy.

In its substance and structure, the Kaya identity reflects a more
general identity that expresses impact (I) as a product of human po-
pulation (P), affluence (A), and technology (T) (Ehrlich and Holdren
1971, 1972). Population is the same in both the Kaya and IPAT iden-
tities, GWP/person represents affluence, and the other two terms
characterize technology.

This formulation implies that a larger number of people with a higher
income and more extensive use of certain technologies will have a greater
impact on the environment. The role of technology can be ambiguous –
technologies that produce and combust fossil fuels are the primary an-
thropogenic source of carbon dioxide, while technologies for harnessing
renewable energy and nuclear power, sequestering carbon, and improving
efficiency can reduce net anthropogenic carbon emissions.

2.2. Previous uses of the Kaya Identity in scenario analysis

The Kaya Identity has been widely used, with some prominent ex-
amples being Nakicenovic et al. (2000), Kawase et al. (2006), Raupach
et al. (2007), and Hoffert et al. (1998). There are so many examples, in
fact, that we don't attempt a comprehensive review here. What is in-
teresting is that there's been only modest progress in the use of this
identity since 1989, beyond the initial expansion of the identity to split
population from GWP per person. Some researchers have expanded the
identity to account for other weaknesses as we discuss below, although
those efforts always stopped short of what we term our “expanded Kaya
identity” for the energy sector presented below.

To explore the intellectual history of this concept, Appendix A ex-
amines how five generations of reports for the Intergovernmental Panel
on Climate Change (IPCC) and related reports have treated the Kaya
identity. The IPCC reports represent the state of scientific under-
standing about climate change at any time, so they are a good marker
for evolution in the understanding and use of this concept in analyzing
historical data or in evaluating future scenarios.

In no case did the IPCC reports expand the Kaya identity beyond its
slightly expanded four-factor form as shown in Equation (2), above, but
the Assessment Reports became more sophisticated over time in how
they used the concept and presented the analysis results. Other re-
searchers have expanded the identity, but progress on this front has
been piecemeal and halting. Appendix A also presents the key articles
that made progress in expanding the identity over time.

2.3. Reasons to expand the decomposition

2.3.1. Disentangling energy intensity and supply chain losses
The most widely used metric for energy intensity of economic ac-

tivity (PE/GWP) refers to primary energy (PE), which is the total energy
input to the economy from all sources, measured as the energy potential
in fossil fuels and biomass at the point of extraction (Grübler et al.,
2015). The PE/GWP metric is sensitive to four types of changes in an
energy-economy system, each of which is affected by specific dynamics
outlined with examples in Table 1.

Although the definition of energy intensity as a ratio of primary
energy to economic activity (PE/GWP) is widely used in the literature,
there are long-standing arguments for separating final energy to better
assess trends in end-use demands and to isolate the first effect (energy
supply losses) in Table 1 (Schipper et al., 1992). Final energy is the
energy that is actually delivered to the customer's meter or gas tank,
and it can include electricity, gasoline, hydrogen, or direct uses of
natural gas, coal and biomass (Grübler et al., 2015). The Special Report
on Emissions Scenarios (SRES) reports Final Energy (FE) in its detailed
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appendices, allowing a more accurate assessment of the energy in-
tensity of the economy (Nakicenovic et al., 2000), and a few analysts
have disaggregated FE/GWP and PE/FE in previous scenario decom-
position studies (Grübler et al., 1993; Kawase et al., 2006; Price et al.,
2006).

Following those authors, the PE/GWP metric can be further dis-
aggregated as shown in Equation (3):

=PE
GWP

FE
GWP

PE
FE (3)

where

FE
GWP

is the Final Energy Intensity of Economic Activity, and
PE
FE

is a measure of total energy system supply losses for delivering

final energy to users.

The ratio of primary energy to final energy delivered at an
economy-wide scale indicates the portion of potential energy lost in the
supply chain. A value of 1.0 indicates zero conversion losses in deli-
vering final energy to users, so this ratio will be greater than 1.0 for all
real energy systems.

In the context of a single technology type (e.g. an electric power
plant), the ratio of final energy to primary energy (FE/PE) is a metric
that captures both the efficiency of conversion and efficiency of energy
transport/transmission. At an aggregate data level, however, it is not
accurate to represent the ratio of primary energy to final energy (PE/
FE) as the inverse of the conversion efficiency, as is done, for example,
in Kawase et al. (2006). Table 1 lists three different dynamics in an
energy system that can affect supply losses, and a change in technical
efficiency is only one.

Energy supply losses do occur as a result of some inefficiency along the
way, but the value of the metric itself varies even if conversion efficiencies
in the system are held constant. Changes in the PE/FE ratio can result from
changes in the balance between fuels supplying a single type of final en-
ergy (e.g. natural gas vs. coal for electricity generation) or the balance
between final energy types (e.g., supplying water heating using electricity
or natural gas). For the sake of precision and clarity this article departs
from the system efficiency terminology used by some other authors in
favor of the more precise term Energy Supply Loss Factor (ESLF).

2.3.2. Converting non-combustion energy production to primary energy
One of the key issues in understanding energy systems is assessing

the total energy consumed by the system, including all the losses in
making energy available to consumers. This assessment is complicated
because of variations in how different energy sources produce fuels or
electricity that allow us to do useful work.

Primary energy is the energy contained in fossil and biomass fuels,
measured as (for example) the heat content of coal that goes into a power

plant's boiler (Grübler et al., 2015). The difference between primary en-
ergy and secondary energy is the conversion loss in converting coal to
electricity. The secondary energy is the amount of electricity injected into
the grid at the busbar (measured in kWh), which also called net generation
(after accounting for on-site use of electricity to run the plant). Final en-
ergy is the electricity delivered to the customer's meter, which is lower
than that injected by the power plant into the grid because of transmission
and distribution (T&D) losses.

Nuclear, hydroelectric, solar electric, wind power, and other non-
combustion sources of electricity (or hydrogen or process heat created
using these fuels) do not have losses that result in additional emissions
like fossil fuel generation does. What should define the quantity of
primary energy for these sources? There is the energy embodied in the
nuclear fuel and the solar flux hitting a photovoltaic panel, but what
does it mean to “consume” that energy from the perspective of the
emissions calculated by the Kaya identity?

To fully account for global energy use in emissions scenarios, all
non-thermal sources of electricity generation, hydrogen, and process
heat have traditionally been assigned a primary energy value based on
some measure of the amount of fuel needed to generate equivalent
amounts of secondary energy, plus the associated transmission and
distribution (T&D) losses to transport the secondary energy to the
customer's meter. This approach assumes that the alternative to the
non-combustion energy is fossil fuel-fired combustion/generation.

For many years, this method (termed the Substitution Method) was
considered in the scenario analysis community to be the “customary
convention”. The standard prescription for efficiency of conversion of
primary to final energy in electricity generation was a constant 38.6%
(Grübler and Nakicenovic, 1996; Nakicenovic et al., 1998, p.90). This
convention implies a final to primary energy factor of 9.33 MJ/kWh
(kWh measured at the customer's meter). For direct heat treated with
the Substitution Method, a different efficiency of conversion may be
used–for example, 85%, as found in IIASA's Global Energy Assessment
(IIASA, 2012, p.1820).

One could also imagine a “dynamic substitution” approach in which
non-combustion sources are assigned energy supply chain losses equal
to those of the average losses in the combustion part of the energy
system as they change over time. Whereas the original substitution
method assumed constant losses over time, this alternative method
would assess losses as they evolve in the energy systems being modeled.
That means it would capture the shift from (for example) older in-
efficient plants to newer efficient ones.

This method of imputing average system losses to non-combustion
sources has some justification when there is a significant amount of
final energy delivered by fuel-based energy sources, a situation that
holds now and into the near future for many energy scenarios. It also
allows for accurate comparison of the contribution of both combustion
and non-combustion resources to the generation mix.

There are issues with the substitution approach, however, even if

Table 1
Energy-economy dynamics that affect the ratio of primary energy to GWP.

Category Cause Example

Energy Supply Losses in supply chain
from primary to final energy

Technological improvements in the efficiency of energy supply conversion A shift toward cogeneration of heat and electricity
Changes in the balance of demand for final energy sources A rising share of final energy from electricity
Interfuel substitution among primary energy sources supplying each final
energy type

A rising share of electricity generated using natural gas

End-use Efficiency in the conversion
of final energy to end-uses

Technological improvements in the efficiency of end-use energy conversion More efficient lights or motors
Interfuel substitution among final energy sources A shift from all-gasoline to plug-in electric hybrid vehicles

Structural Change in the economy Changes in the modes of energy service delivery Globalized trade patterns; Urban development patterns
Changes in the types of economic activity A rising share of economic activity from the services sector

Conservation Reduction in non-productive energy uses Carpooling; Changes in personal behavior or lifestyle
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using the more accurate “dynamic” version. Imputing losses for non-
combustion resources in essence creates “fictional” primary energy
losses that aren't evident in the actual energy supply system. If non-
combustion resources displace combustion sources with real conversion
losses, those losses are eliminated and primary energy use should go
down. Using the substitution approach masks that contribution.

In 1998, modelers participating in the landmark Special Report on
Emissions Scenarios prepared for the Intergovernmental Panel on
Climate Change adopted an alternative convention for non-combustion
electricity generation based on the heat content of the electricity power
plants delivered to the busbar. This convention equates primary energy
of electricity generation to the secondary energy at the busbar, using a
conversion factor of 3.6 MJ/kWh. It then subtracts T&D losses to get to
final energy. The modelers adopted this method, termed Direct
Equivalence, as their common convention in order to harmonize as-
sumptions and facilitate the comparison of results.

SRES designated nuclear power to be treated with the direct
equivalent method along with solar power, wind power, hydropower,
geothermal power, and other renewable sources of electricity and hy-
drogen (Nakicenovic et al., 2000).1 Hundreds of mitigation scenarios
based upon the reference scenarios developed for SRES have inherited
the direct equivalence assumption, and aside from cautionary notes
buried deep in the SRES report itself (on pages 216 and 221) and a
sidebar treatment in Nakicenovic et al. (1998, p.90), it has seldom been
mentioned in the literature.

If more direct equivalent sources enter the supply mix, primary
energy use will decline because conversion losses from combustion are
eliminated. The substitution approach would instead indicate that total
primary energy and losses in the system would change more modestly
as a function of the efficiency of combustion plants remaining in the
system after existing plants are displaced, a counterintuitive result.
Primary Energy calculated using the direct equivalent approach cor-
rectly characterizes energy system losses over time (in the form of the
Energy Supply Loss Factor).

Scenario modelers, who rely heavily on the “four-factor” Kaya
identity, have often compared historical changes in the ratio of Primary
Energy to GWP to the results of model projections, failing to distinguish
quantitatively between changes attributable to the shift to non-com-
bustion direct equivalent resources and those due to changes in Final
Energy intensity. One example is Loftus et al. (2015), which relies on
aggregate trends in Primary Energy to GWP for its otherwise rigorous
scenario comparisons. Another is Peters et al. (2017), which notes the
possibility of splitting out the effects of these two factors in their
“methods” discussion but still shows a graph of historical and projected
Primary Energy use over time (their Fig. 3).

Even if the scenario modelers understand this distinction, our ex-
perience is that policy makers can be easily misled by this way of
presenting the data, thinking that scenarios with large reductions in the
ratio of PE to GWP demonstrate significant end-use efficiency when in
many scenarios significant savings come from increasing penetration of
non-combustion resources. This conceptual confusion is avoided by split-
ting those two key drivers in our expanded Kaya identity, and we strongly
caution against relying on the ratio of PE to GWP in almost all cases.

It is also important to note that two of the most important energy
data agencies, the US Energy Information Administration (EIA) and the
International Energy Agency (IEA), have adopted conventions about
primary energy that can lead to confusion. EIA uses the dynamic

substitution method for all non-combustion resources, with non-bio-
mass renewables assigned the annual average conversion efficiency of
fossil fuel plants, and nuclear power assigned the annual average
thermal efficiency of nuclear plants. Electricity imports are treated
using Direct Equivalence.2 IEA treats renewables like solar, wind, and
hydro using Direct Equivalence, geothermal energy as a thermal power
plant with 10% efficiency, and nuclear power with the thermal effi-
ciency of 33%.3 These choices should be reconsidered in light of the
wide acceptance of the Direct Equivalent method in the scenario
modeling community and the need to avoid inconsistencies in how
primary energy conversions are treated.

More research is clearly needed on methods for assessing trends in
Primary Energy. As Nakicenovic et al. (1998, p.90) point out, “The very
concept of primary energy becomes increasingly problematic, particu-
larly as renewable energy forms gain importance”. Appendix B delves
more into the implications of correctly accounting for the convention of
direct equivalence.

2.3.3. Disentangling decarbonization and fossil sequestration
Historical trends in carbon intensity expressed as a ratio of net

carbon emissions (C in Equation (2)) to primary energy (PE) are un-
affected by carbon sequestration because that technology has not yet
entered the energy system at any detectable scale. However, making the
distinction between the effects of decarbonization and sequestration is
important because many energy scenarios for the 21st century that
stabilize global warming at lower levels (e.g. 450 ppm CO2 and below)
imply large-scale deployment of carbon sequestration technology
(Koelbl et al., 2014). The recent low-energy scenario in Grübler et al.
(2018) avoids all use of sequestration, but that work is the exception.

When carbon sequestration (CS) is present in the system, the ratio of
net fossil carbon emissions (NFC) to primary energy (PE) will produce
misleading indications about the carbon intensity of primary energy
supply. Net fossil carbon emissions from the energy sector are less than
the total fossil carbon (TFC) content of primary energy supply by an
amount equal to the fossil fuel carbon sequestered (CSFF) rather than
released to the atmosphere, as shown in Equation (4).

=NFC TFC CSFF (4)

As a result, increases in carbon sequestration artificially depress the
indicator for carbon intensity in the four factor Kaya identity (C/PE),
conflating two distinct effects: decarbonization, a decline in the carbon
content of primary energy sources (TFC/PE), and fossil sequestration
(CSFF).

We can express the effect of sequestration as the ratio of net emissions
released to the atmosphere (after accounting for sequestration) and the
total fossil carbon dioxide in the primary energy system before seques-
tration (NFC/TFC). Hanaoka et al. (2006) and Kawase et al. (2006)
therefore proposed adding a term to the four-factor Kaya identity that
accounts for the effect of sequestration, as shown in Equation (5).

=NFC
PE

TFC
PE

NFC
TFC (5)

where

TFC
PE

is the Total Fossil Carbon Intensity of Primary Energy;
NFC
TFC

is the Fraction emitted to the atmosphere, and
TFC NFC

TFC
is the Sequestration Rate, or fraction sequestered.

Without this correction, whenever the sequestration rate is rising,
the carbon content-based calculation of carbon intensity (C/PE in
Equation (2)) will overstate the actual decarbonization rate because

1 It is important to clarify that engineering-economic models used to produce
global energy scenarios do consider the technical efficiency of the engineered
systems that harness non-thermal renewable resources and nuclear power.
Indeed, technical efficiency is a vital characteristic of cost and performance
parameters for each technology type. However, the primary energy data calcu-
lated for each technology type by models using SRES terms is reported in terms
of direct equivalence as described above.

2 https://www.eia.gov/tools/glossary/index.php?id=P.
3 https://www.iea.org/statistics/resources/balancedefinitions/.
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sequestration masks the carbon content of fossil fuels remaining in the
primary energy mix. In other words, if the C/PE indicator is calculated
using NET emissions after sequestration, the decomposition results will
be misleading.

Another complexity enters when we consider sequestering carbon
from the flue gases of biomass combustion. Many recent scenarios rely
on biomass sequestration to achieve negative emissions (Fuss et al.,
2014; Kemper, 2015), but the flow of carbon in this case is separate
from those from fossil fuels. Biomass sequestration involves extracting
carbon from the global biospheric carbon cycle and sequestering it. We
can think of biomass sequestration as altering the additive term for
land-use change included in Equations (9) and (10) below. For clarity,
we show biomass sequestration as a separate term that is subtracted
from the other additive components in the fully expanded decomposi-
tion below.4

2.3.4. Distinguishing fuel switching among fossil fuels from shifts away from
fossil fuels

An additional refinement of the expanded identity is described by
Peters et al. (2017) in their methods section. They advocate (and im-
plement) further decomposition of the TFC/PE term into two terms as
shown in Equation (6):

=TFC
PE

PE
PE

TFC
PE

FF

FF (6)

where

TFC
PE

is the Total Fossil Carbon Intensity of all Primary Energy;
PE

PE
FF is the share of Primary Energy from fossil fuels (the fossil fuel
fraction), and
TFC
PEFF

is Total Fossil Carbon Intensity of Primary Energy supplied by

fossil fuels.

This additional detail allows decomposition of changes in TFC/PE
into the two key drivers of those changes: switching from fossil fuels to
non-combustion alternatives (e.g. from fossil fuels to zero emission
energy resources) and then fuel switching among fossil fuels (e.g. from
coal to natural gas, or from high to low emitting oils, as described in
Koomey et al. (2016)).

A subtlety of this treatment of emissions intensity relates to the
treatment of combustion of biomass and biofuels. The MESSAGE model
(following the IPCC) reports CO2 emissions from the combustion of
biomass and biofuels in the agriculture, forestry, and other land-use
(AFOLU) sector (IPCC, 2006). Indirect emissions of other greenhouse
gases like methane are tallied separately (and lumped into the “other
gases” category in Fig. 6, below).

Biomass and biofuels primary energy consumption is contained in
our estimate of total primary energy consumption, but net direct carbon
dioxide emissions from these fuels are captured in the AFOLU sector
(along with any offsetting uptake of CO2 in the biosphere). This is why
we call our term for carbon emissions above Total Fossil Carbon and not
Total Energy Carbon. Biomass and biofuels are generally small com-
pared to total primary energy, but this accounting convention may
become important in certain high biomass scenarios.

3. Decomposition of emissions in the energy sector

Improvements to the Kaya Identity described in the previous section
lead to new insights about the way key drivers of carbon dioxide
emissions from the energy sector are affected by policy intervention.
The decomposition applied in this paper incorporates each of these
elements, which can be summarized as in Equation (7):

=C P GWP
P

FE
GWP

PE
FE

PE
PE

TFC
PE

NFC
TFCFossil Fuels

FF

FF (7)

where

CFossil Fuels represents carbon dioxide (CO2) emissions from fossil
fuels combusted in the energy sector,
P is population,
GWP is gross world product (measured consistently using
Purchasing Power Parity or Market Exchange Rates),
FE is final energy,
PE is total primary energy, calculated using the direct equivalent
(DEq) method, as discussed above and in Appendix B,
PEFF is primary energy associated with fossil fuels,
TFC is total fossil CO2 emitted by the primary energy resource mix,
NFC is net fossil CO2 emitted to the atmosphere after accounting for
fossil sequestration.

We summarize the underlying factors (e.g., population, GWP, final
energy, primary energy, primary energy from fossil fuels, and total
fossil CO2) in a dashboard as in Fig. 1, and the expanded Kaya ratios
that comprise CFossil Fuels in Fig. 2. In the first row, we show absolute
values over time for each of the components, in this case for historical
data from 1900 to 2014 (De Stercke, 2014). Because sequestration is
negligible during this period, the graphs omit the final term in the ex-
panded identity.

Dotted lines project the paths each driver would have followed if
historic rates of change had persisted to 2014. We calculate rates of
change for the periods 1900 to 2014 and 1995 to 2014. The latter
period showed greater change in the final energy intensity of economic
activity than the longer period. We also show those historical rates of
change on the dashboards for future scenario projections, to provide
benchmarks against which future scenarios can be compared.

In Figs. 1 and 2, there are three different scales at which the
dashboard drivers can be plotted: absolute value, indexed value, and
rate of change. Each of these provides different insights into the his-
torical data (or, as we show later, into scenario assumptions and re-
sults).

The first tier in the dashboard shows each key driver by its absolute
value. Constructing a dashboard of key drivers in absolute value terms
shows decomposition results in units with physical and economic
meaning (such as population, GWP, GWP/capita, or Energy Use/GWP),
facilitating cross-model comparisons.

The second tier shows the relative influence of each driver in the
reference case and the relative influence of the policy intervention on
each driver by plotting an index relative to some base year. For Figs. 1
and 2, that base year is 1900, for graphs characterizing future scenarios
below, the reference year is 2010.

The third and fourth tiers show the growth rate for each factor. The
instantaneous growth rate of total carbon dioxide emissions is equal to
the sum of the growth rates for each key factor, as shown in Equation
(8a) (for derivation, see Appendix I).

= + + +

+ + +

d(C)/dt
C

d(P)/dt
P

d(GWP/P)/dt
GWP/P

d(FE/GWP)/dt
FE/GWP

d(PE/FE)/dt
PE/FE

d(PE /PE)/dt
PE /PE

d(TFC/PE )/dt
TFC/PE

d(NFC/TFC)/dt
NFC/TFC

FF

FF

FF

FF

(8a)

Since we calculate changes over discrete time periods, this

4 In the past, biomass combustion was assumed to be carbon neutral, but
more recent analysis has shown that assumption to be incorrect for biofuels
(DeCicco, John M., Danielle Yuqiao Liu, Joonghyeok Heo, Rashmi Krishnan,
Angelika Kurthen, and Louise Wang. 2016. "Carbon balance effects of U.S.
biofuel production and use." Climatic Change. vol. 138, no. 3. 2016/10/01. pp.
667–680 [https://doi.org/10.1007/s10584-016-1764-4].), which points to the
importance of careful accounting for carbon stocks and flows in any scenario
where biomass or biofuels play a role.
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relationship holds as an approximation:

+ + +

+ + +

(C)
C

(P)
P

(GWP/P)
GWP/P

(FE/GWP)
FE/GWP

(PE/FE)
PE/FE

(PE /PE)
PE /PE

(TFC/PE )
TFC/PE

(NFC/TFC)
NFC/TFC

FF

FF

FF

FF

(8b)

For historical data, we show the growth rate in the third tier with
year-by-year changes, and for the fourth tier, we show it with data

tallied as a running five-year average. The annual growth rate shows
more variation in the historical data, as we expect. For future scenario
projections, we show data averaged over ten-year periods, because
those are the data available in the scenario databases we use.5

Fig. 1. Dashboard of key factors–Historical data 1900 to 2014.
Data for 1900 to 2014 taken from IIASA's PFU database: De Stercke (2014) and http://www.iiasa.ac.at/web/home/research/researchPrograms/
TransitionstoNewTechnologies/PFUDB.en.html. Green and blue dotted lines represent historical average annual rates of change for 1900 to 2014 and 1995 to
2014, respectively. GWP data are based on Purchasing Power Parity (PPP). PE is measured using direct equivalence (DEq) for non-combustion sources. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

5 One subtlety is that for future scenarios we calculate compound annual
growth rates over ten-year periods then apply those growth rates in each year of
the relevant period. This allows us to plot trends over the entire analysis period
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Interestingly, Fig. 1 shows that GWP growth is greater in the past
two decades than from 1900 to 2014 but the annual rate of increase in
final energy consumption is lower in the later period. Final energy

intensity reductions have therefore accelerated in the past two decades.
We use this same format for scenario projection data. To illustrate,

we show example dashboards for a scenario projection using the
MESSAGE 4.0 model, based on results presented in the AMPERE
modeling exercise (see Appendix H and Riahi et al. (2015)). We chose
MESSAGE as the exemplar in this article because the MESSAGE mod-
eling team is widely known and respected in the modeling community,
and because MESSAGE explicitly treats almost all warming agents in its
projections, thus allowing us to present a full decomposition to

Fig. 2. Dashboard of key driver ratios–Historical data 1900 to 2014.
Data for 1900 to 2014 taken from IIASA's PFU database: De Stercke (2014) and http://www.iiasa.ac.at/web/home/research/researchPrograms/
TransitionstoNewTechnologies/PFUDB.en.html. Green and blue dotted lines represent historical average annual rates of change for 1900 to 2014 and 1995 to
2014, respectively. GWP data are based on Purchasing Power Parity (PPP). PE is measured using direct equivalence (DEq) for non-combustion sources. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

(footnote continued)
(rather than dropping a decade in the beginning or at the end as we would have
to do if we showed only one growth rate per decade). If scenario output data are
available for intervening years, then this convention can easily be altered.
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illustrate our calculations and visualizations (Fricko et al., 2017; Krey
et al., 2016; Schrattenholzer, 1981).

Fig. 3 shows the underlying factors for the MESSAGE scenario, while
Fig. 4 shows the Kaya ratios, just as for the historical data. The figures
show the reference scenario using a black solid line and the low emis-
sions (intervention) scenario as a red line. The dashed lines show trends
in historical data for comparison as discussed above.

In the NFC absolute value pane, we also show the total effect of
biomass CCS plus fossil CCS as a green solid line. Even though negative
emissions from biomass CCS are not counted in the energy sector, its
deployment is linked to the energy sector as well as to the carbon cycle
associated with land use. Because this emissions reduction option is
important in many low emissions scenarios (Kemper, 2015), we add
this line to show how it compares to the NFC in the intervention case.
We also show a line for biomass CCS in the dashboard of additive terms,
below.

Fig. 3 shows some key insights. Population, GWP, and carbon in-
tensity of fossil energy are not much affected by the intervention

scenario, while final energy, primary energy, fossil fuel fraction, and
net fossil carbon are all significantly reduced in the intervention case.
Growth rates for all factors in the future scenarios are lower than his-
torical rates.

GWP growth rates decline over the analysis period, but final energy
growth slows almost to zero then starts rising again after 2050, causing
the FE/GWP ratio in Fig. 4 to break off from the 1995 to 2014 trend line
and slow its long and rapid decline. This curious behavior is ripe for
further investigation, and it illustrates the kind of questions that this
method of presenting results enables (see also Appendix C).

The figures also show the importance of fossil CCS to reducing
emissions in the intervention case. The NFC pane in Fig. 3 clearly shows
an emissions reduction compared to the TFC pane, and the NFC/TFC
pane in Fig. 4 shows the importance of that reduction relative to TFC
emissions.

The factors dashboard and the ratios dashboard are a starting point
for further investigation. Now let's dig into additional ways to garner
insights from this analysis and presentation approach.

Fig. 3. Dashboard of key factors driving a future scenario projection.
Model: MESSAGE 4.0, full technology cases, base case OPT and 450 ppm OPT cases, from the AMPERE 2 database: Riahi et al. (2015) and https://tntcat.iiasa.ac.at/
AMPEREDB. Green and blue dotted lines represent historical average annual rates of change for 1900 to 2014 and 1995 to 2014, respectively. GWP data are based on
Purchasing Power Parity (PPP). PE is measured using direct equivalence (DEq) for non-combustion sources. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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4. Another window into the expanded kaya results

Another way to visualize changes in emissions over time is with a
bar chart. This type of graph shows the compound annual growth rate
for each term in the expanded Kaya identity over some time period,
based on Equation (8b). As shown in Fig. 5, it can be plotted for the
reference case, an intervention case, or the difference between them,
giving a quantitative indication of the contributors to emissions growth
or reductions, in this case over the 2010 to 2100 time-period.

Fig. 5 shows results for our exemplar MESSAGE scenarios. Changes
in GWP per capita and final energy per unit of GWP are the two most
important drivers of emissions trends in the reference case, while re-
duction of fossil fuel fraction (decarbonization of the primary energy
supply using non-fossil options), fossil sequestration, and the final en-
ergy intensity of economic activity are the three most important com-
ponents of emission reductions in the intervention case.

5. Additive elements for non-energy emissions

The expanded Kaya identity in this article addresses direct carbon
dioxide emissions from the energy sector. Now we turn to other sources
of greenhouse gas emissions, including CO2 emissions from industrial

processes like cement production, CO2 emissions from land-use changes
such as deforestation, and non-CO2 greenhouse gases, which include
methane, nitrous oxide, and a set of powerful greenhouse gases con-
taining fluoride manufactured for human use.6

These factors are included in the third dashboard as additional
sources of emissions, with the non-CO2 gases being converted to carbon
dioxide equivalent. Total greenhouse gas equivalent emissions (CTotal

eq )
can be expressed as in Equation (9).

= + + +C C C C C CSTotal
eq

Fossil Fuels Industry Land use Non CO2 gases
eq

Biomass

(9)

where

CIndustry represents carbon dioxide emissions from industrial pro-
cesses (non-energy uses of fossil fuels that result in emissions, such
as cement and aluminum production). Some models combine these

Fig. 4. Dashboard of key Kaya driver ratios for a future scenario projection.
Model: MESSAGE 4.0, full technology cases, base case OPT and 450 ppm OPT cases, from the AMPERE 2 database: Riahi et al. (2015) and https://tntcat.iiasa.ac.at/
AMPEREDB. Green and blue dotted lines represent historical average annual rates of change for 1900 to 2014 and 1995 to 2014, respectively. GWP data are based on
Purchasing Power Parity (PPP). PE is measured using direct equivalence (DEq) for non-combustion sources. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

6 The so-called F-gases include: hydrofluorocarbons (HFCs), perfluorocarbons
(PFCs), and sulfur hexafluoride (SF6), all of which are released in extremely
small quantities compared to carbon dioxide, but the warming potential of each
molecule can be as much as five orders of magnitude greater.
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emissions with fossil fuel combustion emissions, but they should be
split out for clarity.
CLand use represents net carbon dioxide emissions from changes in
agriculture and land-use that are not associated with emissions re-
ductions from biomass CCS. This term can also be negative if there is
significant reforestation.
CNon CO gases

eq
2 represents emissions of other greenhouse gases

converted to CO2 equivalent using relative factors of global warming
potential.7

CSBiomass represents net negative emissions from sequestering carbon
emissions associated with biomass combustion (in effect, such se-
questration removes carbon from the biosphere). The emissions re-
ductions from this source must be carefully distinguished from those
land-use changes.

The guiding principle should be that all energy system and related
emissions should be included in one of the additive terms in Equation
(9). For example, indirect emissions from hydroelectric facilities would
include CO2 from fossil energy used in constructing the plant (in the
fossil fuels category), CO2 from cement used in construction (in the
industry category), and methane emissions from decomposition of
biomass on flooded land (in the non-CO2 gases category). For nuclear
power, indirect emissions from fossil-powered enrichment would fall
into the fossil fuels category, while CO2 from cement used in con-
struction would fall into the industry category.

Substituting CFossil Fuels with the expanded Kaya identity components
from Equation (7), we get Equation (10), which is what we call our fully
expanded decomposition:

= +

+ +

C P GWP
P

FE
GWP

PE
FE

PE
PE

TFC
PE

NFC
TFC

C

C C CS

Total
eq FF

FF
Industry

Land use Non CO gases
eq

Biomass2 (10)

Standard scenario outputs for models with comprehensive coverage
of emissions will usually include the data for each additive term. In
some cases, additional calculations or data outputs will be required.

The fully expanded decomposition of key drivers in Fig. 6 has all
additive elements: net fossil energy CO2 emissions, biomass sequestra-
tion, land-use change, industrial non-energy CO2 emissions, and non-
CO2 gas emissions. If direct air capture of CO2 becomes important in
future, another pane with those emission reductions can be included in
the additive dashboard.

Energy sector emissions reductions still dominate all reductions, but
each of the additive components has a measurable effect on total
greenhouse gas emissions.

Appendix J gives details on the projection of cement emissions,
which are combined with fossil energy emissions in the MESSAGE
model outputs. We derive them instead from van Ruijven et al. (2016)
and subtract from the total of fossil energy and industrial emissions
from the MESSAGE outputs to get fossil fuel energy emissions.

It is critical to separate biomass CCS from fossil CCS in such attri-
bution graphs to get a clear picture of carbon flows. As discussed in
section 2, above, biomass CCS extracts carbon from the atmosphere and
sequesters it, while fossil CCS sequesters emissions that otherwise
would have reached the atmosphere from the combustion of fossil fuels.

The importance of CCS is highlighted in Fig. 7, which gives the full
picture of CCS compared to TFC and NFC (it includes the energy sector
plus biomass CCS, but not the other additive terms in Fig. 6). The re-
ference case TFC is in black and the intervention case TFC is in red. NFC
(which shows the effect of fossil CCS on TFC) is represented by the blue
solid line, and NFC minus biomass CCS is shown by the solid green line.

Fig. 5. Compound annual growth rate in expanded Kaya drivers (MESSAGE,
2010 to 2100).
Model: MESSAGE 4.0, full technology cases, base case OPT and 450 ppm OPT
cases, from the AMPERE 2 database: Riahi et al. (2015) and https://tntcat.iiasa.
ac.at/AMPEREDB.

7We convert emissions of the two major non-CO2 greenhouse gases (methane
and nitrous oxides) to CO2 equivalents using 100 year global warming poten-
tials (including climate feedbacks) from IPCC. 2013. Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-
K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.
Midgley (eds.)]. Cambridge, United Kingdom and New York, NY, USA:
Cambridge University Press. [http://www.climatechange2013.org], Chapter 8,
table 8.7, page 714: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/
WG1AR5_Chapter08_FINAL.pdf. For the MESSAGE analysis, we use the mod-
el's calculation of the GWP of F-gases.
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The emissions reductions associated with fossil and biomass CCS are
shown in the dotted blue and green lines, respectively.

Reductions in direct emissions from the energy sector are re-
presented by the difference between the black and red lines in Fig. 7,
then savings from CCS contribute further. Fossil CCS has a slightly
larger cumulative impact than biomass CCS over the analysis period,
but both achieve reductions of Gigatonne scale, so are significant by
any measure. The decline in fossil CCS reductions is significant after
2070, a result that points to the need for further digging into these
output results.

Another way to present the full emissions reductions picture is
shown in Fig. 8. This chart shows total GHG equivalent emissions in the
reference and intervention cases, then attributes savings to each

component we've identified in the energy sector ratios dashboard
(Fig. 4) and the additive emissions dashboard (Fig. 6).

The non-energy emissions results in the additive dashboard come
straight from model outputs in almost all cases. To decompose the fossil
energy related emissions (which are part of a multiplicative identity),
we rely on the LDMI I technique first proposed by Ang (2004). This
method gives a perfect decomposition (no residual term) and is rela-
tively simple to apply to multi-factor problems. In addition, the IEA
uses the LMDI I method to decompose CO2 emissions from electricity
production (IEA, 2015), creating a credible precedent for our choice.

Population projections are the same in both the reference and in-
tervention cases, so no emissions savings accrue from this category in
this scenario (or in most other scenario exercises (Bongaarts and Neill,

Fig. 6. Summarizing effects of all key drivers on total emissions (MESSAGE).
Model: MESSAGE 4.0, full technology cases, base case OPT and 450 ppm OPT cases, from the AMPERE 2 database: Riahi et al. (2015) and https://tntcat.iiasa.ac.at/
AMPEREDB. Industrial non-energy CO2 emissions (e.g., cement process emissions) taken from Appendix J.
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2018)). The majority of the decline in Total Fossil Carbon is from
substituting non-combustion resources for fossil energy supply. Fuel
switching among fossil fuels contributes only a nominal amount to
emissions reductions. In addition, substitution on the supply side is the
single largest contributor to emissions reductions for the whole sce-
nario. The contribution of Fossil CCS declines in the latter part of the
analysis period, as we also saw in Fig. 7.

Graphs like Fig. 8 work well in plotting contributions to emissions
reductions, but when one or more terms in the identity result in an
increase in emissions over time a stacked area graph can't show that
easily. For example, the Energy System Loss Factor (ESLF) sometimes
increases during part of the intervention scenario, thus increasing
emissions during that period. In those cases, we adjust for that increase
in those years by allocating it in proportion to the emissions reductions
from the other terms in the fully expanded decomposition in every year.
The sum of all net emissions reductions will then reflect the difference
between the reference case (black line) and the intervention case
emissions (red line). The sign of each term (positive or negative) can be
most accurately represented in bar charts like those in Fig. 5.

6. Benefits and uses of decomposition methods

The decomposition tools described in this article offer benefits over
the ad hoc methods traditionally used in the scenario analysis com-
munity. Individual modeling groups often develop their own techni-
ques, but those cannot be easily applied for cross-model comparisons
and are normally not as comprehensive as those developed in this ar-
ticle. For example, most analysts still rely on the four factor Kaya

identity for analyzing scenario results, which can lead to confusion, as
we describe above.

There are three main audiences for decomposition methods:
modelers, policy analysts, and research funders. Each of these groups
can use decompositions for sanity checking, promoting transparency,
and making valid comparisons.

6.1. Sanity checking during scenario creation

For modelers (and secondarily, policy analysts and funders who
review interim results), these tools allow scrutiny to begin much earlier
in the research cycle and encourage sanity checking of assumptions and
results before publication. For example, scenarios often rely on heroic
assumptions for costs and adoption of new exotic technologies (like
biomass CCS) combined with modest projected changes in FE/GWP or
renewable energy adoption. While not necessarily wrong, such incon-
sistencies in relative technological progress should prompt further
digging and analysis (Hummel, 2006). Use of these decomposition
methods makes that analysis easier and quicker.

6.2. Promoting transparency

For all users, decomposition tools allow greater transparency, un-
derstanding, and documentation of methods and results than has
heretofore been possible. The assumptions and algorithms of these
models can be opaque, but decomposition methods give a view into the
black box that will enable debate about key issues and uncertainties in
mitigation scenarios, even though the complex algorithms embedded in
the models are not as easily subject to outside scrutiny.

6.3. Making valid comparisons quickly

For all users, decomposition tools allow better comparisons between
history and projections, baseline and policy cases, and different base-
line and policy cases from many modeling shops (Hummel, 2006). For
example, a substantial divergence of a projection from historical trends
(or unintuitive discontinuities in the projection) can reveal issues with
data and methods or lead to new policy insights.

Comparisons among different projections can be done at a glance
using our decomposition dashboard and supporting graphs. Each sce-
nario set can be summarized in a few pages, and the results of multiple
models can be quickly compared. It is now almost never possible to do
such comparisons easily using published modeling results, but if
modelers create decompositions using standard tools in a consistent
framework, it will become standard practice.

7. Limitations of the analysis and areas for further research

The decomposition of key drivers involves examination of high-
level, aggregate data. The focus on global trends can obscure important
changes at the regional and sectoral levels, as well as technological
trends.

An obvious next step is to apply the dashboard and associated tools
to compare recent model runs completed for IPCC's latest assessment
report and follow-on exercises (Riahi et al., 2017). The tools created for
this article can readily be applied to multiple scenarios, and we make
them freely available at http://www.koomey.com for modelers who
want to apply them. We are also eager to help modelers implement key
scenarios in this framework, so we can learn more and improve the
tools.

It is also time for a comprehensive review of the variables included
in scenario databases, in light of the data needs for the decomposition
methods outlined in this article. Certain key information for most
models, like the split between fossil, biomass, and industrial process
CCS impacts, and the split between fossil energy and industrial process
carbon dioxide emissions, still require additional digging or

Fig. 7. Summarizing the effects of fossil and biomass CCS on the MESSAGE
scenarios.

Fig. 8. Summarizing effects of all key drivers on total emissions (MESSAGE).
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assumptions to create these decompositions. Small changes in the re-
quired output data could facilitate more rapid creation of many de-
composition analyses. Appendices D, E, and F present some specific
examples of how we use data from the Ampere and AR5 scenario da-
tabases and give suggestions for additional data that should be included
to make creating full decompositions easier.

One area that has been insufficiently explored to date is the set of
interdependencies between the different terms in multiplicative iden-
tities, first pointed out for the IPAT identity by Ehrlich and Holdren
(1971) and explored in some depth for the four-factor Kaya identity by
Nakicenovic et al. (2000). The identity implies that each term is in-
dependent of the others, but in practice, that is not a good assumption.
For example, population growth and technological development are
both affected by the level of wealth per person, and these factors in-
teract. If you change one factor, the others will also change. These
complexities are beyond the scope of this analysis, but assessing those
interactions empirically is a worthwhile focus of additional research,
starting with assessing correlation coefficients among the terms.

The decomposition of key drivers presents little information about
the energy technologies that are underlying the emissions scenario, or
more importantly, how that portfolio of energy technologies is affected
by climate policy intervention. A more detailed decomposition of
sources of mitigation is required to illuminate those insights at the
technology level, as explained in Hummel (2006).

The treatment of biomass and biofuels combustion in IPCC-related
scenarios (lumping these emissions into the AFOLU sector) may be
worth revisiting. An alternative way to treat emissions from these fuels
would be to include the direct carbon emissions from biofuels in the
emissions from the energy sector (along with the indirect CO2 emissions
from collection and processing of these fuels, which are already tallied
there and in the “land use” sector), and to include the uptake of carbon
emissions associated with growing biomass for combustion and con-
version to biofuels in the “land use” pane in Fig. 6. The term for Total
Fossil Carbon would then be renamed “Total Energy-sector Carbon”, or
TEC, to capture this change. The advantage of this treatment is more
specificity in which sectors the emissions and uptake occur.

Direct air capture of carbon dioxide has attracted attention recently
as a long-term option for emissions reductions (APS, 2011; Sanz-Pérez
et al., 2016). If this option ever becomes important in mitigation sce-
narios, the additive dashboard (Fig. 6) will need another pane to ac-
count for those impacts. If the use of synthetic methane (Porosoff et al.,
2016), in which carbon is extracted from the atmosphere then com-
bined with hydrogen derived from non-fossil sources, ever becomes
commonplace, the direct emissions from using such fuels would also
reside in the energy sector, while the carbon uptake from creating those
fuels would reside in the new “direct air capture” pane of Fig. 6.

8. Conclusions

The energy scenario community has struggled for decades with how
best to compare and contrast analysis results. This article presents one
way to solve that problem that builds upon the familiar Kaya and IPAT
identities. The graphs developed here show the key drivers of emissions
growth and reductions in a standard format using scenario outputs that
are widely available. We are hopeful that adoption of these methods
will result in better understanding of scenario results and more rapid
learning in the analysis community than has prevailed to date.
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