
Smart Contract Code

Review And Security

Analysis Report

Customer: Credbull

Date: 15/08/2024

We express our gratitude to the Credbull team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

Credbull is an ERC-4626 vault system.

Document

Name

Smart Contract Code Review and Security Analysis Report for

Credbull

Audited By Olesia Bilenka, Andy Cho

Approved By Ataberk Yavuzer

Website https://credbull.io/

Changelog 26/07/2024 - Preliminary Report

15/08/2024 - Final Report

Platform Arbitrum

Language Solidity

Tags Vault; Yield Farming

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/credbull/credbull-defi/

Commit f927c85

Remediation commit ce1c17e

2

https://credbull.io/
https://hackenio.cc/sc_methodology
https://github.com/credbull/credbull-defi/

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

2 1 0 1

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 1

Low 1

Vulnerability Severity

F-2024-4404 - Centralization Risk in Vault System Leading to Deposit Lock Medium

F-2024-4396 - Risk of Ownership Control Loss in Owner-Dependent Contracts Low

3

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/aa41a960-31b1-4e57-b597-8c1cd5e52949
https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/2add75ab-d0d1-4a9f-9dd9-a776c8d2c330

Documentation quality

Functional requirements are provided.

Technical description is provided.

NatSpec comments are provided.

Code quality

The code mostly follows best practices and styleguides.

The development environment is configured.

Test coverage

Code coverage of the project is 90% (branch coverage).

Deployment and basic user interactions are covered with tests.

4

Table of Contents

System Overview 6

Privileged Roles 7

Risks 9

Findings 10

Vulnerability Details 10

Observation Details 14

Disclaimers 24

Appendix 1. Severity Definitions 25

Appendix 2. Scope 26

System Overview

Credbull is an ERC-4626 vault system with the following contracts:

Vault - is an abstract smart contract based on OpenZeppelin's ERC4626, designed to manage

ERC20 token deposits with enhanced security. Deposited assets are transferred to a

designated CUSTODIAN address, with the contract maintaining records of total assets

deposited. The contract includes functions for depositing, minting, withdrawing, and

redeeming assets, with built-in error handling for invalid operations. Additionally, it features

access control mechanisms and the ability to pause operations for security purposes.

MaturityVault - is an abstract contract extends the Vault by adding a maturity feature,

preventing further deposits once matured. It tracks whether the vault is matured and includes

functions to mature the vault and check maturity status. This ensures that only existing assets

and any accrued yield are managed after maturity.

FixedYieldVault - is a contract that extends the MaturityVault and integrates additional

features from WhiteListPlugin , WindowPlugin , and MaxCapPlugin . It allows deposits and redemptions

based on set windows and caps, and it offers a fixed yield to users. The contract includes

mechanisms for maturity checking and whitelisting, ensuring that only approved addresses

can interact with it. The FixedYieldVault also has functionality to pause operations and to

withdraw any ERC20 tokens held by the contract.

UpsideVault - is a contract that extends the functionality of the FixedYieldVault by integrating

collateral management using the Credbull token (CBL). Users must deposit collateral in CBL

tokens alongside their main assets, with the required collateral amount determined by a

specified percentage of the asset value and the current TWAP (Time-Weighted Average Price).

The contract allows for both deposits and withdrawals while ensuring the proper handling and

accounting of the collateral. Additionally, the contract has a mechanism to update the TWAP

value, which is crucial for calculating the collateral requirements.

VaultFactory - is a factory designed to manage the creation and oversight of vault contracts.

It maintains sets of allowed custodians and created vaults, allowing only authorized

custodians to interact with the factory. The contract allows administrators to add or remove

custodians and provides functions to query the list of created vaults and validate custodians.

WhiteListProvider - is a contract that manages a whitelist of addresses that can be used by

other contracts to determine if addresses are authorized. It allows the owner to update the

whitelist status of multiple addresses at once. The contract tracks whitelist status through a

mapping and provides a function to check if an address is whitelisted.

MaxCapPlugin - is a contract that provides functionality to enforce a maximum cap on asset

deposits in a vault. It tracks the maximum allowed cap through the maxCap variable and uses a

boolean flag, checkMaxCap , to enable or disable the cap enforcement. The contract provides

internal functions to check if the deposited amount exceeds the cap, update the cap value,

and toggle the cap check status.

WhiteListPlugin - is a contract that manages white-listing functionality within a vault

system. It enforces that certain addresses must be white-listed to perform operations, such as

6

deposits, if their transaction amount meets or exceeds a specified threshold

(depositThresholdForWhiteListing). The white-list status is determined through an external

IWhiteListProvider contract. The plugin includes internal functions for checking white-list status

and toggling the white-list check.

WindowPlugin - is a contract that contract manages deposit and redemption time windows

for a vault. It defines time periods during which deposits and redemptions are permitted,

using timestamps for opening and closing these windows. The plugin includes functions to

check whether operations fall within these time windows, update window timestamps, and

toggle the window check functionality.

CredbullFixedYieldVault - is a straightforward implementation of the FixedYieldVault

contract. It serves as a specific instance of FixedYieldVault with no additional functionality or

modifications.

CredbullFixedYieldVaultFactory - is a contract that extends the VaultFactory and is designed

to facilitate the creation of CredbullFixedYieldVault instances. It provides functionality for

deploying new vaults and managing the list of allowed custodians and vault addresses.

CredbullFixedYieldVaultWithUpside - is a contract that extends the UpsideVault and is

tailored to integrate additional upside functionality into the fixed yield vault. It leverages the

existing features of UpsideVault , which itself extends FixedYieldVault , to provide enhanced

capabilities for handling collateral and deposit-redemption windows.

CredbullUpsideVaultFactory - is a contract that extends VaultFactory to create instances of

CredbullFixedYieldVaultWithUpside . This factory contract provides functionality for deploying new

vaults that integrate both fixed yield and upside features.

CredbullWhiteListProvider - is an implementation that extends the WhiteListProvider

contract. It inherits the functionality for managing a whitelist of addresses from

WhiteListProvider , including updating whitelist statuses and querying the whitelist status of an

address.

Privileged roles

The DEFAULT_ADMIN_ROLE in the Vault contract has the authority to pause and unpause contract

operations, impacting the ability of users to deposit or withdraw assets. They can also set

the custodian address and modify parameters related to asset management, such as

asset decimals and share token settings.

The DEFAULT_ADMIN_ROLE in the MaturityVault contract has the authority to toggle the maturity

check, initiate the vault's maturation process, and manage other critical parameters,

affecting the vault's operational status and asset management.

The DEFAULT_ADMIN_ROLE in the FixedYieldVault contract has significant control, including the

ability to toggle checks for maturity, whitelisting, window periods, and max cap, as well as

to update the max cap value and window timestamps. The OPERATOR_ROLE can initiate the

vault's maturation process and setting the TWAP value (UpsideVault contract). These roles

hold significant power over the contract's functionality and the management of user

assets.

7

The DEFAULT_ADMIN_ROLE in the VaultFactory contract has broad control, including adding or

removing custodian addresses and managing factory-wide settings. The OPERATOR_ROLE does

not have direct access to this contract's functions but is important in related contexts

where vaults are created and managed.

The owner is of the WhiteListProvider contract is authorized to update the whitelist status of

addresses and make changes to the whitelist.

OPERATOR_ROLE role can create new CredbullFixedYieldVault instances. It must be a valid

custodian to create a vault

8

Risks

Owner's Unrestricted State Modification: The absence of restrictions on state

variable modifications by the owner leads to arbitrary changes, affecting contract integrity

and user trust, especially during critical operations like minting phases.

Absence of Time-lock Mechanisms for Critical Operations: Without time-locks on

critical operations, there is no buffer to review or revert potentially harmful actions,

increasing the risk of rapid exploitation and irreversible changes.

Single Points of Failure and Control: The project is fully or partially centralized,

introducing single points of failure and control. This centralization can lead to

vulnerabilities in decision-making and operational processes, making the system more

susceptible to targeted attacks or manipulation.

9

Findings

Vulnerability Details

F-2024-4404 - Centralization Risk in Vault System Leading to

Deposit Lock - Medium

Description: The Vault system, inheriting ERC4626 functionality, presents a

centralization risk. Upon depositing tokens, the funds are sent to the

CUSTODIAN address instead of being stored in the vault itself.

function _deposit(...) ... {

 ...

 SafeERC20.safeTransferFrom(IERC20(asset()), caller, CUSTODIAN, assets);

 ...

}

This setup risks users being unable to withdraw their tokens if the

CUSTODIAN fails to return them to the vault address. The Credbull team

indicated that this design is for security reasons, but it inherently

creates a risk for users.

In general for security reasons we don't want the funds to sit

on the vault contract. So, we are transferring it to the

custodian, which is a custodial wallet in Circle.

Additionally, the FixedYieldVault contract, which inherits from Vault

and MaturityVault , includes the withdrawERC20 function, allowing the

DEFAULT_ADMIN_ROLE to withdraw any ERC-20 token from the contract.

This setup, as confirmed by the Credbull team, meets their project

requirements but introduces significant risk to users.

function withdrawERC20(address[] calldata _tokens) public onlyRole(DEFAULT_ADMIN

 _withdrawERC20(_tokens, msg.sender);

 }

function _withdrawERC20(address[] calldata _tokens, address _to) internal {

 for (uint256 i = 0; i < _tokens.length; i++) {

 uint256 balance = IERC20(_tokens[i]).balanceOf(address(this));

 SafeERC20.safeTransfer(IERC20(_tokens[i]), _to, balance);

10

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/aa41a960-31b1-4e57-b597-8c1cd5e52949

 }

}

Moreover, FixedYieldVault checks whether withdrawals can be made

according to specified timeframes, which the DEFAULT_ADMIN_ROLE can

modify, and whether the contract is sufficiently funded ("matured")

to cover current withdrawals and yields. Users are also unable to

withdraw their deposits if the contract (FixedYieldVault or

UpsideVault) is paused.

function _withdraw(...) onWithdrawOrRedeem(caller, receiver, owner, assets, shar

 ...

}

modifier onWithdrawOrRedeem(...)

 ... {

 _checkIsRedeemWithinWindow();

 _checkVaultMaturity();

 _;

}

This setup risks locking user deposits.

Assets:

CredbullFixedYieldVault.sol [https://github.com/credbull/credbull-

defi/]

CredbullFixedYieldVaultWithUpside.sol

[https://github.com/credbull/credbull-defi/]

FixedYieldVault.sol [https://github.com/credbull/credbull-defi/]

UpsideVault.sol [https://github.com/credbull/credbull-defi/]

Vault.sol [https://github.com/credbull/credbull-defi/]

Status: Mitigated

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Dependent

Complexity: Simple

Severity: Medium

Recommendations

11

Remediation: To mitigate the centralization risk, consider the following:

1. Implement a mechanism to securely store user funds directly in

the vault, minimizing dependency on the CUSTODIAN .

2. Limit the DEFAULT_ADMIN_ROLE 's ability to withdraw arbitrary tokens

and modify withdrawal timeframes. Introduce additional

safeguards, such as multi-signature approvals or user consent,

for these actions.

3. Ensure transparency and clear communication with users

regarding the conditions under which they can withdraw their

deposits, especially during paused contract states.

These measures will help reduce the risk to users and increase the

system's overall security and trustworthiness.

Resolution: The provided functionality works as intended. The client notice:

For the Custodian deposit - We are using a VASP (e.g Circle)

to custody our funds. We will use the VASPs security and

recovery mechanisms

The withdrawal mechanism is present for the cases when someone

does direct transfers according to the provided information.

12

F-2024-4396 - Risk of Ownership Control Loss in Owner-

Dependent Contracts - Low

Description: The WhiteListProvider contract uses Ownable functionality from

OpenZeppelin, heavily relying on the owner.

If ownership is mistakenly transferred to the wrong address,

functions that are allowed only to the owner may become

unreachable or compromised, thereby blocking the real owner from

accessing critical administrative functions.

Assets:

WhiteListProvider.sol [https://github.com/credbull/credbull-defi/]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Integrate Ownable2Step from OpenZeppelin, which introduces a two-

step process for transferring ownership. This process necessitates

that the prospective new owner actively accepts the ownership,

thereby adding an extra security measure to prevent accidental

transfers.

Resolution: The Finding is fixed according to PR#87 [commit 9361eca]. The

Ownable2Step was integrated. However, the Ownable import was not

removed.

13

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/2add75ab-d0d1-4a9f-9dd9-a776c8d2c330
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

Observation Details

F-2024-4397 - Floating Pragma - Info

Description: The project uses floating pragma ^0.8.20 .

This may result in the contracts being deployed using the wrong

pragma version, which is different from the one they were tested

with. For example, they might be deployed using an outdated

pragma version which may include bugs that affect the system

negatively.

Assets:

CredbullFixedYieldVault.sol [https://github.com/credbull/credbull-

defi/]

CredbullFixedYieldVaultFactory.sol

[https://github.com/credbull/credbull-defi/]

CredbullFixedYieldVaultWithUpside.sol

[https://github.com/credbull/credbull-defi/]

CredbullUpsideVaultFactory.sol

[https://github.com/credbull/credbull-defi/]

CredbullWhiteListProvider.sol

[https://github.com/credbull/credbull-defi/]

VaultFactory.sol [https://github.com/credbull/credbull-defi/]

MaxCapPlugin.sol [https://github.com/credbull/credbull-defi/]

WhiteListPlugin.sol [https://github.com/credbull/credbull-defi/]

WindowPlugin.sol [https://github.com/credbull/credbull-defi/]

IWhiteListProvider.sol [https://github.com/credbull/credbull-defi/]

WhiteListProvider.sol [https://github.com/credbull/credbull-defi/]

FixedYieldVault.sol [https://github.com/credbull/credbull-defi/]

MaturityVault.sol [https://github.com/credbull/credbull-defi/]

UpsideVault.sol [https://github.com/credbull/credbull-defi/]

Vault.sol [https://github.com/credbull/credbull-defi/]

Status: Accepted

Recommendations

Remediation: Consider locking the pragma version and avoid using a floating

pragma in the final deployment. Consider known bugs for the

compiler version that is chosen.

14

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/0884bb2e-ea27-45d3-a4b9-94b5182a7c41
https://github.com/ethereum/solidity/releases

F-2024-4398 - Missing Validation for Time Windows in

WindowPlugin Contract - Info

Description: The WindowPlugin contract allows the setting of time windows for

deposits and redemptions. These time windows are set in the

constructor and the _updateWindow functions.

constructor(WindowPluginParams memory params) {

 depositOpensAtTimestamp = params.depositWindow.opensAt;

 depositClosesAtTimestamp = params.depositWindow.closesAt;

 redemptionOpensAtTimestamp = params.redemptionWindow.opensAt;

 redemptionClosesAtTimestamp = params.redemptionWindow.closesAt;

 checkWindow = true;

}

function _updateWindow(uint256 _depositOpen, uint256 _depositClose, uint256 _rede

 depositOpensAtTimestamp = _depositOpen;

 depositClosesAtTimestamp = _depositClose;

 redemptionOpensAtTimestamp = _redeemOpen;

 redemptionClosesAtTimestamp = _redeemClose;

}

However, there is no validation to ensure that the start time is

earlier than the end time, nor that the deposit window precedes the

redemption window.

This lack of validation can lead to incorrect contract configurations,

potentially causing operational issues.

Assets:

WindowPlugin.sol [https://github.com/credbull/credbull-defi/]

Status: Fixed

Recommendations

Remediation: Consider implementing validation checks in the constructor and

_updateWindow functions to ensure that the start time is less than the

end time and that the deposit window occurs before the redemption

window. This will help prevent incorrect configurations and ensure

that the contract operates as intended.

Resolution: The Finding is fixed according to PR#87 [commit dedf91d]. The

validateWindows modifier was added to the constructor and _updateWindow

functions,

15

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/6ca4b3a8-0523-464e-b2df-63e140f1e42f

modifier validateWindows(uint256 _depositOpen, uint256 _depositClose, uint256 _r

 if (!(_depositOpen < _depositClose && _depositClose < _redeemOpen && _redeemO

 revert WindowPlugin__IncorrectWindowValues(_depositOpen, _depositClose, _

 }

 _;

}

16

F-2024-4399 - Redundant Fallback and Receive Functionality -

Info

Description: The Vault contract contains the receive and fallback functions which

is designed to revert the native token payments.

receive() external payable {

 revert CredbullVault__NativeTransferNotAllowed();

}

fallback() external payable {

 revert CredbullVault__NativeTransferNotAllowed();

}

However, to establish the contract as non-receptive to payments,

the inclusion of receive and fallback functions is not mandatory.

Avoiding the creation of receive and fallback functions can result in

Gas savings at the time of contract deployment.

Assets:

Vault.sol [https://github.com/credbull/credbull-defi/]

Status: Fixed

Recommendations

Remediation: Consider removing the receive and fallback functions to design the

contract as one that does not accept payments.

Resolution: The Finding is fixed according to PR#87 [commit 7226f47]. The

 receive and fallback functions were removed.

17

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/4f904980-5e37-4ba8-835a-da54f5c4ef6d

F-2024-4400 - Lack of Configuration Events - Info

Description: In the FixedYieldVault and VaultFactory contract there is a partial lack of

configuration events.

This might result in decreased transparency and increased difficulty

in monitoring changes effectively.

This issue affects the following functions:

FixedYieldVault contract:

toggleMaturityCheck

toggleWhiteListCheck

toggleWindowCheck

toggleMaxCapCheck

updateMaxCap

updateWindow

mature

VaultFactory contract:

allowCustodian

removeCustodian

Assets:

FixedYieldVault.sol [https://github.com/credbull/credbull-defi/]

Status: Fixed

Recommendations

Remediation: Consider implementing additional event logging for critical

configuration changes to enhance monitoring and ensure operational

transparency in the Strategy contract.

Resolution: The finding is fixed according to PR#87 [commits e9ca043 and

a43861a] The additional event logging was implemented.

18

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/1032f360-ba4e-4836-9685-70bfb34cebea

F-2024-4403 - State Variables That Should Be Immutable - Info

Description: In the FixedYieldVault contract, the _fixedYield variable is only updated

in the constructor.

The variables to be assigned only in the contract's constructor could

be set immutable to reduce gas cost when reading them.

Same for the whiteListProvider and depositThresholdForWhiteListing

variables for the WhiteListPlugin contract.

Assets:

WhiteListPlugin.sol [https://github.com/credbull/credbull-defi/]

FixedYieldVault.sol [https://github.com/credbull/credbull-defi/]

Status: Fixed

Recommendations

Remediation: Make the _fixedYield , whiteListProvider , and

depositThresholdForWhiteListing variables immutable.

Resolution: The Finding is fixed according to PR#87 [commit 1259db9]. The

mentioned variables are marked immutable.

19

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/03715733-cdef-4b78-ac2b-5f6aecea3721

F-2024-4414 - Missing Zero Addresses Validations Leading to

Misconfiguration - Info

Description: In the WhiteListProvider contract, the updateStatus function does not

validate whether _addresses are non-zero.

function updateStatus(...) ... {

 ...

 for (uint256 i; i < length;) {

 isWhiteListed[_addresses[i]] = _statuses[i];

 unchecked {

 ++i;

 }

 }

}

Additionally, in the FixedYieldVault contract, the constructor does not

verify that params.roles.owner and params.roles.operator are non-zero

addresses.

constructor(FixedYieldVaultParams memory params) ... {

 _grantRole(DEFAULT_ADMIN_ROLE, params.roles.owner);

 _grantRole(OPERATOR_ROLE, params.roles.operator);

 ...

}

In the VaultFactory contract, the owner , operator and custodians are not

verified for being non-zero. In the allowCustodian function, the

_custodian is not verified for being non-zero.

constructor(address owner, address operator, address[] memory custodians) {

 _grantRole(DEFAULT_ADMIN_ROLE, owner);

 _grantRole(OPERATOR_ROLE, operator);

 bool[] memory result = new bool[](custodians.length);

 for (uint256 i = 0; i < custodians.length; i++) {

 result[i] = allowedCustodians.add(custodians[i]);

 }

}

function allowCustodian(address _custodian) public onlyRole(DEFAULT_ADMIN_ROLE)

20

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/2390b385-ad80-4930-9fd5-dcaddb171466

 return allowedCustodians.add(_custodian);

}

This oversight can lead to misconfiguration issues, potentially

causing functionality failures or security vulnerabilities.

Assets:

WhiteListProvider.sol [https://github.com/credbull/credbull-defi/]

FixedYieldVault.sol [https://github.com/credbull/credbull-defi/]

Status: Fixed

Recommendations

Remediation: Consider implementing checks in the updateStatus function of the

WhiteListProvider contract to ensure _addresses are non-zero. Similarly,

in the FixedYieldVault contract, validate that params.roles.owner and

params.roles.operator are non-zero addresses during the constructor's

execution.

Resolution: The Finding is fixed according to PR#87 [commit 0a8f658 and

4a001d6]. Addresses checks for being non-zero were implemented.

21

F-2024-4416 - Missing Validation for collateralPercentage and

twap in UpsideVault Contract - Info

Description: In the UpsideVault contract, the constructor does not check whether

params.collateralPercentage is less than or equal to the MAX_PERCENTAGE

value.

This validation is also missing in the setTWAP function when setting

the twap value.

constructor(...) ... {

 collateralPercentage = params.collateralPercentage;

 ...

}

function setTWAP(uint256 _twap) public onlyRole(OPERATOR_ROLE) {

 twap = _twap;

}

Lack of these checks can lead to misconfigurations, potentially

causing incorrect contract behavior.

Assets:

UpsideVault.sol [https://github.com/credbull/credbull-defi/]

Status: Fixed

Recommendations

Remediation: Consider adding validation checks in the UpsideVault contract's

constructor to ensure that params.collateralPercentage does not exceed

MAX_PERCENTAGE . Similarly, implement checks in the setTWAP function to

verify that the twap value is within acceptable limits. These

validations will help prevent misconfigurations and ensure the

contract operates as intended.

Resolution: The Finding is fixed according to PR#87 [commit 4a001d6] The

validation for params.collateralPercentage was added. twap value can be

any according to the information provided by the team.

22

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/5c8b1b5f-babb-4362-9fee-fa9bea7a0a2f

F-2024-4419 - Violation of Checks-Effects-Interactions Pattern -

Info

Description: In the contracts, there are certain functions that do not adhere to the

Checks-Effects-Interactions (CEI) pattern.

Vault contract:

_deposit

_withdraw

UpsideVault contract:

_deposit

_withdraw

The absence of this pattern can lead to vulnerabilities where

interactions with external contracts occur before all checks and state

changes have been completed, potentially compromising contract

integrity.

Assets:

UpsideVault.sol [https://github.com/credbull/credbull-defi/]

Vault.sol [https://github.com/credbull/credbull-defi/]

Status: Accepted

Recommendations

Remediation: Consider implementing the Checks-Effects-Interactions (CEI) pattern

for the functions identified in the contracts. Adopting this pattern will

help prevent reentrancy attacks and ensure that all validations and

state updates are completed before any external interactions,

thereby enhancing the security and reliability of the contracts.

23

https://portal.hacken.io/App/Projects/Details/fa0e97cc-7852-4ffa-97d3-94050090d565/Finding/43b56c59-152c-49ae-a006-72ca1e09a19e

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

24

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution, do not affect security score but

can affect code quality score.

25

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope

Details

Repository https://github.com/credbull/credbull-defi/

Commit f927c850b628a63dd71e5c6a1e8888e89a6262e5

Remediation

commit
ce1c17ea94494d985c516f0ac3be379cb2fef8e3

Whitepaper
Credbull High Level Architecture (SHA256:

13117d79fe1da3f456fad5b0c0d24c956bb8552b1e9c40b97c2d90c6f50cf4f6)

https://docs.credbull.io/docs/litepaper

Contracts in Scope

./packages/contracts/src/factory/VaultFactory.sol

/packages/contracts/src/plugin/MaxCapPlugin.sol

/packages/contracts/src/plugin/WhiteListPlugin.sol

/packages/contracts/src/plugin/WindowPlugin.sol

/packages/contracts/src/provider/whiteList/IWhiteListProvider.sol

/packages/contracts/src/provider/whiteList/WhiteListProvider.sol

/packages/contracts/src/vault/FixedYieldVault.sol

/packages/contracts/src/vault/MaturityVault.sol

/packages/contracts/src/vault/UpsideVault.sol

/packages/contracts/src/vault/Vault.sol

/packages/contracts/src/CredbullFixedYieldVault.sol

/packages/contracts/src/CredbullFixedYieldVaultFactory.sol

/packages/contracts/src/CredbullFixedYieldVaultWithUpside.sol

/packages/contracts/src/CredbullUpsideVaultFactory.sol

/packages/contracts/src/CredbullWhiteListProvider.sol

26

https://github.com/credbull/credbull-defi/
https://docs.credbull.io/docs/litepaper

