
2024-08-10 solana-quic-client fragmentation

Summary

Firedancer found a design flaw in Agave’s QUIC client that forces additional complexity in the Firedancer QUIC server. We sent some

patches to Anza to fix this situation.

Background

Our current fd_quic development strategy is to aggressively cut down on code complexity. This requires some sacrifices, mostly in the form

of non-optional features and use-cases that generic QUIC clients would need but Solana peers do not. We did the same for fd_tls and it

resulted in robust and statically verifiable code.

One such opportunity for simplification are QUIC streams. To recap, QUIC streams are comparable to TCP connections. They have

unbounded size, receive windows, make no guarantees on fragment alignment, and generally can’t deliver data out-of-order to clients.

fd_quic currently implements all the complexity associated with streams:

receive windows for large transfers (MAX_STREAM_DATA frames)

bidirectional streams

reorder buffers (in case fragments from different streams arrive interleaved)

under the hood

event queues and flags

timeouts

With a well-designed client, none of that complexity would be needed. Solana peers use lots of small streams (MTU-ish <=1232 bytes)

where each stream should fit in one or two QUIC packets. In particular, reorder buffers are redundant in the absence of fragmentation or

with in-order fragmentation.

For example, this is a good traffic pattern:

Whereas this pattern requires a more complex QUIC implementation:

The second traffic pattern is bad because it requires the peer to allocate buffers for streams 1 and 2 that live for multiple packets. The peer

also wouldn’t know how bad the fragmentation gets so it has to assume the worst case: Every transaction that the remote is allowed to send

might be made up of out-of-order fragments. (Note on send allowance: QUIC has a connection-wide limit on the number of new streams as

well as per-stream content size)

As a result, handling a bad client requires a lot more memory. The memory pressure in turn limits maximum throughput.

solana-quic-client issues

Unfortunately, solana-quic-client produces an odd traffic pattern in even under optimal network conditions.

1 Packet 1: Stream 1 (new=1 fin=1) # not fragmented

2 Packet 2: Stream 2 (new=1 fin=1) # not fragmented

3 Packet 2: Stream 3 (new=1 fin=0) # fragmented

4 Packet 3: Stream 3 (new=0 fin=1) # fragmented

5 Packet 3: Stream 4 (new=1 fin=1) # not fragmented

1 Packet 1: Stream 1 (new=1 fin=0) # fragmented

2 Packet 1: Stream 2 (new=1 fin=0) # fragmented

3 Packet 2: Stream 1 (new=0 fin=0) # fragmented, out of order

4 Packet 3: Stream 2 (new=0 fin=1) # fragmented, out of order

We wrote a simple test that connects the Agave QUIC client implementation (solana-quic-client) to an fd_quic server. The QUIC client is

configured to send transactions as fast as possible using a single thread and a single connection. A uniform size distribution is used for

packets. The peers are connected via localhost. Source: firedancer: Add spam-server mode to quic-compat CLOSED

Figure 1 shows the resulting traffic pattern. Note how many stream fragments are out of order: 526, 558, 578, 598, 614, 626, 638, 650, 662,

…

Reverse Engineering

Note that the client here turned an ordered sequence of messages into a partially reordered sequence of fragments. This doesn’t just

happen accidentally and requires some effort. Possible culprits include the Agave code itself and quinn, the QUIC library it uses.

Tracing from top down:

In typical Agave fashion, the function is thunked a few times:

The problem becomes apparent in send_batch (as of Agave v1.18.22 and v2.0.4). Comments and metrics were removed for brevity:

Figure 1: Upstream solana-quic-client traffic pattern

1 // Our custom test app

2 let mut batch = Vec::<Vec<u8>>::with_capacity(1024);

3 const BUF: [u8; 1232] = [0u8; 1232];

4 loop {

5 let cnt: usize = rng.gen_range(1..batch.capacity());

6 batch.clear();

7 for _ in 0..cnt {

8 batch.push(BUF[0..rng.gen_range(1..BUF.len())].to_vec());

9 }

10 if let Err(err) = conn.send_data_batch(&batch) {

11 eprintln!("{:?}", err);

12 }

13 }

1 dispatch!(fn send_data_batch(&self, buffers: &[Vec<u8>]) -> TransportResult<()>);

2 // calls

3 fn send_data_batch(&self, buffers: &[Vec<u8>]) -> TransportResult<()> { ... }

4 // calls

5 async fn send_data_batch(&self, buffers: &[Vec<u8>]) -> TransportResult<()> { ... }

6 // calls

7 pub async fn send_batch<T>(...) -> { ... }

https://github.com/firedancer-io/firedancer/pull/2671
https://github.com/firedancer-io/firedancer/pull/2671
https://github.com/firedancer-io/firedancer/pull/2671
https://github.com/firedancer-io/firedancer/pull/2671

In short, this code creates a “Future” for every transaction. (A Rust future is a background task that the user “polls” repeatedly until

completion. Each poll operation is non-blocking)

The _send_buffer_using_conn future includes 3 steps (each one is a child “Future”):

1. quinn::OpenUni : Open a unidirectional stream (usually completed instantly, may block if client has run out of quota).

2. quinn::WriteAll : Send a sequence of bytes over the stream (usually completed instantly, may block if stream- or connection-wide

quota limits are hit)

3. quinn::Finish : Wait for the peer to acknowledge all packets that contained stream data (always incurs network delay)

Waiting for the server to ACK every stream is obviously too slow so the Agave code attempts to transmit multiple streams “concurrently” in

chunks. Of course, there is no true “concurrent transmission”. Outgoing packets will be sequenced to some order before being sent to the

Ethernet channel. And herein lies the problem. WriteAll yields data fragments more than once before completing. The order in which

_send_buffer_using_conn Futures are polled is unspecified.

Depending on the version of the “futures” and “quinn” libraries, the code might send every transaction in order (good), or take round robin

turns sending small fragments (terrible).

1 async fn _send_buffer_using_conn(

2 data: &[u8],

3 connection: &Connection,

4) -> Result<(), QuicError> {

5 let mut send_stream = connection.open_uni().await?;

6 send_stream.write_all(data).await?;

7 send_stream.finish().await?;

8 Ok(())

9 }

10

11 pub async fn send_batch<T>(&self, buffers: &[T]) -> Result<(), ClientErrorKind>

12 where T: AsRef<[u8]>,

13 {

14 if buffers.is_empty() {

15 return Ok(());

16 }

17 let connection = self

18 ._send_buffer(buffers[0].as_ref())

19 .await

20 .map_err(Into::<ClientErrorKind>::into)?;

21 let connection_ref: &Connection = &connection;

22 let chunks = buffers[1..buffers.len()].iter().chunks(self.chunk_size);

23 let futures: Vec<_> = chunks

24 .into_iter()

25 .map(|buffs| {

26 join_all(

27 buffs

28 .into_iter()

29 .map(|buf| Self::_send_buffer_using_conn(buf.as_ref(), connection_ref)),

30)

31 })

32 .collect();

33 for f in futures {

34 f.await

35 .into_iter()

36 .try_for_each(|res| res)

37 .map_err(Into::<ClientErrorKind>::into)?;

38 }

39 Ok(())

40 }

Rewrite

A good first fix is to remove the ACK delay to allow for maximal pipelining. The QUIC library handles packet loss (retransmissions) under the

hood anyways.

The send_batch function is simplified to the following:

Figure 2 shows the resulting packet sequence.

Even worse: We got round-robin fragmentation instead of sporadic reordering. Note that the server set a sufficient initial_max_stream_data

so we can rule out potential blocking by stream window sizes.

quinn bug

This behavior is presumably due to a bug in quinn 0.10.2. One would expect the following code to produce an ordered fragment stream:

1 async fn _send_buffer_using_conn(

2 data: &[u8],

3 connection: &Connection,

4) -> Result<(), QuicError> {

5 let mut send_stream = connection.open_uni().await?;

6 send_stream.write_all(data).await?;

7 // send_stream.finish().await?; <== remove this

8 Ok(())

9 }

1 pub async fn send_batch<T>(&self, buffers: &[T]) -> Result<(), ClientErrorKind>

2 where T: AsRef<[u8]>,

3 {

4 if buffers.is_empty() {

5 return Ok(());

6 }

7 let connection = self

8 ._send_buffer(buffers[0].as_ref())

9 .await

10 .map_err(Into::<ClientErrorKind>::into)?;

11 for data in buffers[1..buffers.len()].iter() {

12 Self::_send_buffer_using_conn(data.as_ref(), &connection).await?;

13 }

14 Ok(())

15 }

Figure 2: Rewrite Attempt

1 loop {

2 let mut stream = conn.open_uni().await?;

Unfortunately this is not the case. Stream fragments compete for priority somewhere in quinn’s internals.

Increasing the stream’s “priority” after the write_all operation fixes this behavior. Note that priority isn’t a thing in QUIC. It appears to be

some implementation-defined setting that controls transmit fragment ordering.

At last, we get well ordered fragment stream.

Firedancer submitted the patch to Agave here. It weights in at a net 86 line code footprint reduction.

fd_quic server improvements

Still need to write this part.

3

4 // await polls the WriteAll Future to completion.

5 stream.write_all(...).await?;

6

7 // All data was enqueued into QUIC packets ready to be sent, right?

8 // Hint: No.

9 }

1 loop {

2 let mut stream = conn.open_uni().await?;

3 stream.write_all(...).await?;

4 // Finish sending this stream before sending any new stream

5 _ = send_stream.set_priority(1000);

6 }

Figure 3: Fixed solana-quic-client with workaround

solana: Fix broken parallelism in quic-client OPEN

Created by ripatel-fd • Updated yesterday

Fixes excessive fragmentation by TPU clients leading to a large number of streams per conn in 'sendi

Github

https://github.com/anza-xyz/agave/pull/2526

Fragmentation

There is no need to fragment transactions at all, at least at the moment. As of Solana v2.0 the largest permitted transaction size is 1232

bytes. This is comfortably below the QUIC stream frame payload MTU over IPv4. Unfortunately such fragmentation is required for IPv6 due

to botched MTUs and ICMPv6 blocking across deployments in the wild.

Removing fragmentation will increase the packet rate though. Further research is required to determine whether Agave’s per-packet

overheads are low enough.

QUIC protocol limitations

All of the above is a consequence of coarse protocol limits. The MAX_STREAMS limit in QUIC controls roughly “how many new streams

may be started spontaneously”. This also implies “how many streams may be in send state concurrently” (all of them) but this should be a

separate limit.

