UFS Coastal Regression Tests (RT)

Updated Oct 2024

tests/ directory

rt_coastal.conf file

RT.CONF FORMATTING ### # COMPILE Line (Items separated by a |) # Item 1: COMPILE - This tells rt.conf the following information is to be used in setting up a compile job # Item 2: Compile number - must be sequential in rt.conf - use as a reference for compile failures # Item 3: Compiler to use in build (intel or anu) # Item 4: CMAKE Options - Provide all CMAKE options for the build # Item 5: Machines to run on (- is used to ignore specified machines, + is used to only run on specified machines) ## -> EX: + hera orion gaea = compile will only run on hera orion and gaea machines ## -> EX: - wcoss2 acorn = compile will NOT be run on wcoss2 or acorn # Item 6: [set as fv3]. Used to control the compile job only if FV3 was present, previously used to run a test w/o compiling code # RUN Line (Items separated by a ## NOTE: The build resulting from the COMPILE line above the RUN line will be used to run the test # Item 1: RUN - This tells rt.conf the following information is to be used in setting up a model run # Item 2: Test name. (Which test in the tests/tests directory should be sourced) # Item 3: Machines to run on (- is used to ignore specified machines, + is used to only run on specified machines). ## reference example above # Item 4: Controls whether the run creates its own baseline or it uses the baseline from a different (control) test. # Item 5: Test name to compare baselines with if not itself.

rt_coastal.conf file

```
The full list of regression tests (RTs) and their status can be found in the <u>ufs-coastal repository wiki page</u>.
                               Trying to keep the page up-to-date as much as possible.
### SCHISM tests: 11-15
COMPILE | 11 | intel | -DAPP=CSTLS -DUSE ATMOS=ON -DNO PARMETIS=OFF -DOLDIO=ON | | fv3 |
RUN | coastal florence hsofs.atm2sch | | baseline |
RUN | coastal sandy shinnecock atm2sch | | baseline |
COMPILE | 12 | intel | -DAPP=CSTLSW -DUSE ATMOS=ON -DUSE WW3=ON -DNO PARMETIS=OFF -DOLDIO=ON -
DPDLIB=ON | | fv3 |
RUN | coastal florence hsofs.atm2sch2ww3 | | baseline |
RUN | coastal sandy shinnecock atm2sch2ww3 | | baseline |
COMPILE | 13 | intel | -DAPP=CSTLS -DUSE PAHM=ON -DNO PARMETIS=OFF -DOLDIO=ON | | fv3 |
RUN | coastal florence hsofs sch pam | | baseline |
RUN | coastal sandy shinnecock.sch pam | | baseline |
COMPILE | 14 | intel | -DAPP=CSTLPS -DUSE ATMOS=ON -DNO PARMETIS=OFF -DOLDIO=ON | | fv3 |
RUN | coastal florence hsofs.pam2sch | | baseline |
RUN | coastal sandy shinnecock pam2sch | | baseline |
COMPILE | 15 | intel | -DAPP=CSTLPSW -DUSE ATMOS=ON -DUSE WW3=ON -DNO PARMETIS=OFF -DOLDIO=ON | |
fv3 |
RUN
     coastal florence hsofs.pam2sch2ww3 | | baseline |
RUN | coastal sandy shinnecock pam2sch2ww3 | | baseline |
```

Compile & Run using rt.sh

- rt.sh (found in ufs-coastal/tests folder)
- Enter directory tests: cd ufs-coastal/tests
- Make sure that the script is actually executable (use: chmod +x rt.sh if it is not)
- Run the script as:

Steps to run an existing RT case

Step 1: Setup Work Environment

- Log into one of the pre-configured supported platform (Tier 1) such as Orion, Hercules etc.
- Note that the input files to run UFS Coastal specific RTs are not the part of the input files used by UFS Weather Model. <u>See here for their locations on the currently</u> <u>supported platforms</u>.

Step 2: Download the UFS Coastal Code

>> git clone --recursive https://github.com/oceanmodeling/ufs-weather-model.git

Step 3: Point to the correct input directory (RT) in the *rt.sh* script

>> cd ufs-weather-model/tests/

>> edit rt.sh

Example for MSU's Hercules:

- Open *rt.sh* and find Hercules section
- Edit DISKNM variable as following

elif [[\$MACHINE_ID = hercules]]; then module load contrib rocoto ROCOTORUN=\$(which rocotorun) ROCOTOSTAT=\$(which rocotostat) ROCOTOCOMPLETE=\$(which rocotocomplete) module use /work/noaa/epic/role-epic/spack-stack/hercules/modulefiles module load ecflow/5.8.4 ECFLOW_START=/work/noaa/epic/role-epic/spack-stack/hercules/ecflow-5.8.4/bin/ecflow_start.sh ECF_PORT=\$((\$(id -u) + 1500)) QUEUE=windfall COMPILE QUEUE=windfall PARTITION=hercules dprefix=/work2/noaa/stmp/\${USER} DISKNM=/work2/noaa/nems/tufuk/RT STMP=\$dprefix/stmp PTMP=\$dprefix/stmp SCHEDULER=slurm

cp fv3_conf/fv3_slurm.IN_<u>hercules</u> fv3_conf/fv3_slurm.IN cp fv3_conf/compile_slurm.IN_<u>hercules</u> fv3_conf/compile_slurm.IN

Demo Cases: SCHISM + DATM (atmospheric forcing only)

Step 4: Run the Regression Test "DATM+SCHISM"

>> cd ufs-weather-model/tests/

>> ./rt.sh -l rt_coastal.conf -a <account> -k -n "coastal_ike_shinnecock_atm2sch intel"

Replace <account> with your HPC allocation name.

it compiles the executable
it complies the exceduble
1 directory
prk2/noaa/stmp/tufuk/stmp/tufuk/FV3_RT/rt_2546607_'-DAPP=CSTLS_DUSE_AT
2

+ ((NODES * TPN < TASKS))
+ NODES=1
+ PPN=6
+ ((TASKS - (PPN * NODES) > 0))
+ cat
+ [[hercules = jet]]
+ [[false == true]]
+ [[false == true]]
+ [[false == true]]
+ ./run_test.sh /work2/noaa/nems/tufuk/COASTAL/ufs-coastal/tests /work2/noaa/stmp/tufuk/stmp/tufuk/FV3_RT/rt_2546607 coastal_ike_shinnecock_a
tm2sch 001 11_intel

Demo Cases: DATM+SCHISM (atmospheric forcing only)

Step 4: Run the Regression Test "DATM+SCHISM"

+ continue + read -r line + '[' ''']' + [[false == true]] + [[false == true]]	
<pre>+ set +e + cat /work2/noaa/nems/tufuk/COASTAL/ufs-coastal/tests/logs/log_hercules/compile_11_intel_time.log + cat /work2/noaa/nems/tufuk/COASTAL/ufs-coastal/tests/logs/log_hercules/rt_001_coastal_ike_shinnecock_atm2sch_intel.lo + FILES='fail_test_* fail_compile_*' + for f in \$FILES + [[-f fail_test_*]] + for f in \$FILES + [[-f fail_test_*]]</pre>	g log file for baseline check
<pre>+ [[-T Tall_compile_*]] + [[-e fail_test]] + echo + echo REGRESSION TEST WAS SUCCESSFUL + echo + echo REGRESSION TEST WAS SUCCESSFUL + rm -f 'fv3_*.x' fv3_11_intel.exe modules.fv3_11_intel.lua 'modulefiles/modules.fv3_*' keep_tests.tmp + [[true == false]]</pre>	NOTE: Baselines are both platform and compiler dependent (Intel vs. GNU)
<pre>+ [[false == true]] + [[false == true]] + [[coastal_ike_shinnecock_atm2sch != '']] + rm -f rt_single.conf + date ++ printf '%02dh:%02dm:%02ds\n' 2 53 46 + elapsed_time=02h:53m:46s + echo 'Elapsed time: 02h:53m:46s. Have a nice day!' + echo 'Elapsed time: 02h:53m:46s. Have a nice day!' Elapsed time: 02h:53m:46s. Have a nice day!</pre>	UFS Coastal specific baselines are <u>currently only</u> <u>available on Orion</u> ,

General steps to compile and configure a new application

Compile using compile.sh

- Enter tests directory : cd ufs-coastal/tests
- Make sure that the script is actually executable (use: **chmod +x compile.sh** if it is not)
- Run the script as:

The above command will build SCHISM with the supplied options in the "build_fv3_coastalS" directory. The final UFS executable "fv3_coastalS.exe" will be located in the tests directory.

The next step will be to copy the UFS executable to the "work" directory where all model and UFS configuration files are located.

General steps for configuring an application

- Load the required modules to compile/run UFS-Coastal:
 - module use ufs-weather-model/modulefiles and then module load ufs_frontera.intel
- Compile the UFS executable using one of the predefined application cases compile.sh <platform> "-DAPP=CSTLS -DUSE_ATMOS=ON -DNO_PARAMETIS=OFF -DOLDIO=ON" coastalS intel YES NO
- Copy the executable to a new "work" directory where you'll put all model and UFS config files
- **Configure** each model component as usual for the application (as a standalone run)
- Generate ESMFmesh files for: (a) atmospheric forcing (required by CDEPS) and (b) WW3 (if it is in your application, required by WW3)
 - For atmospheric forcing we use: (a) a ncl script to generate the corresponding SCRIP file and (b) the ESMF_Scrip2Unstruct program to generate the ESMFmesh file
 - For WW3 we run: (a) the ww3_grid program to generate the SCRIP file from *.msh and (b) the ESMF_Scrip2Unstruct program to generate the ESMFmesh file
- Collect all model configuration and input files into the work folder where the UFS executable is located
- Submit the job using your SLURM, PBS or any other scheduler / job submission script
- Make sure that the modules and libraries used to compile the UFS executable are properly loaded from within the job submission script