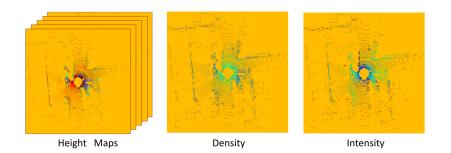
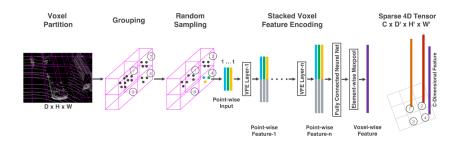


OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds

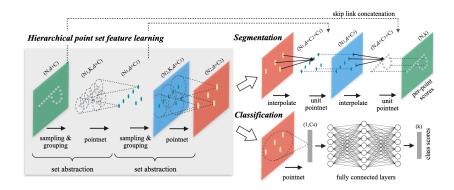
Shaoshuai Shi Ph.D. Student of Multimedia Laboratory The Chinese University of Hong Kong


Nov. 30, 2020


Outline

- Introduction to 3D object detection from point clouds
 - Feature learning from point clouds (voxel-based vs. point-based)
 - 3D box generation (anchor-based vs. anchor-free)
 - Two-stage detector with 3D box refinement
- OpenPCDet architecture and experiments

Feature learning from point clouds

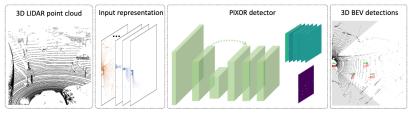

- 2D CNN with bird's view representation
- 3D Voxel CNN (or sparse conv) with Voxel Feature Encoding (VFE)
- PointNet++ series
- Combination of the above strategies

香港中文大學

The Chinese University of Hong Kong

Reference

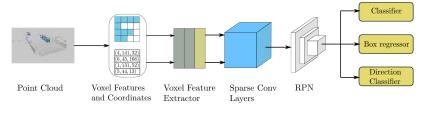
1. Xiaozhi Chen, et al., Multi-View 3D Object Detection Network for Autonomous Driving


2. Yin Zhou, et al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

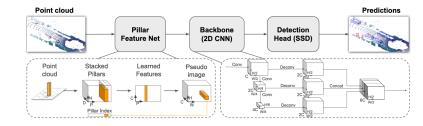
3. Charles Qi, et al., PointNet++: Deep Hierarchical Feature Learning onPoint Sets in a Metric Space

Anchor-based 3D box generation

• Generate 3D boxes by selecting and tuning pre-defined 3D anchors on the bird-view 2D feature maps



Region Proposal Network


Convolutional Middle Layers

Feature Learning Network

PIXOR

SECOND

PointPillar

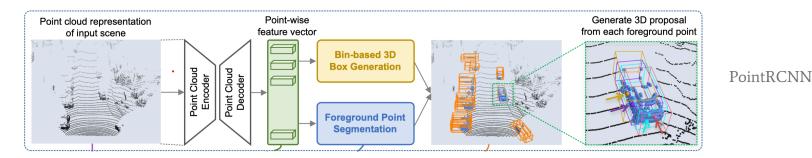
Reference

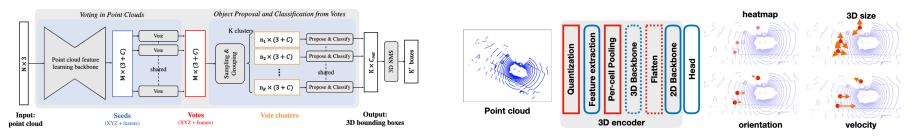
1. Yan Yan, et al., SECOND: Sparsely EmbeddedConvolutional Detection

2. Bin Yang, et al., PIXOR: Real-time 3D Object Detection from Point Clouds

3. Alex H. Lang, et al., PointPillars: Fast Encoders for Object Detection from Point Clouds

VoxelNet


4. Yin Zhou, et al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

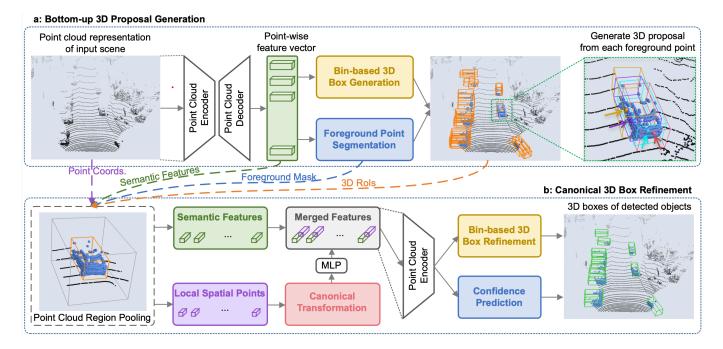

Anchor-free 3D box generation

香港中文大學 The Chinese University of Hong Kong

• Generating 3D box without predefined dense anchors

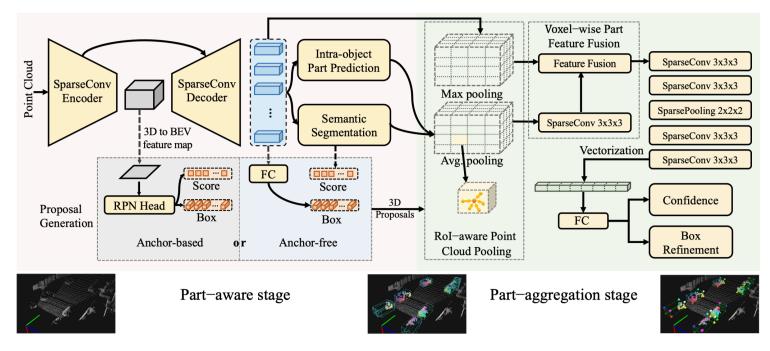
VoteNet

CenterPoint


Reference

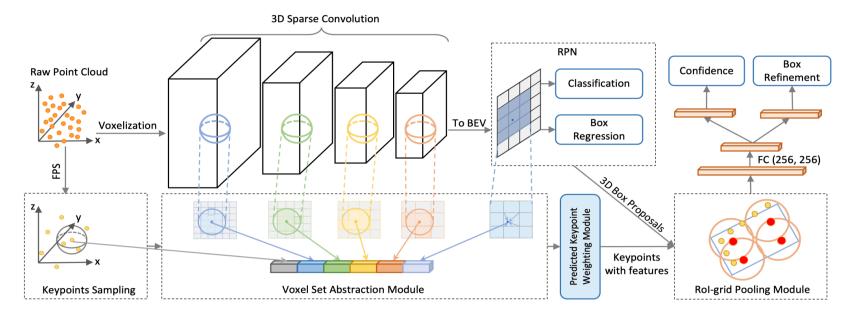
- 1. Shaoshuai Shi, et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
- 2. Charles Qi, et al., Deep Hough Voting for 3D Object Detection in Point Clouds
- 3. Tianwei Yin, et al., Center-based 3D Object Detection and Tracking

Two-stage detector with 3D box refinement


• PointRCNN: 3D box refinement with point cloud region pooling

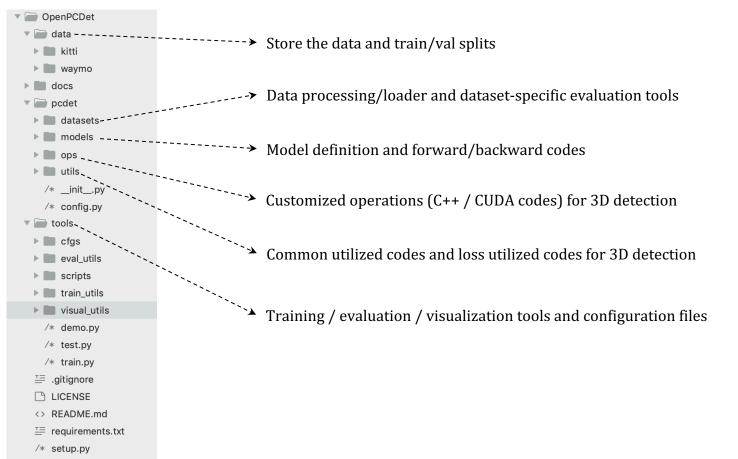
Two-stage detector with 3D box refinement

• Part-A2-Net: 3D box refinement with RoI-aware point cloud pooling


Reference

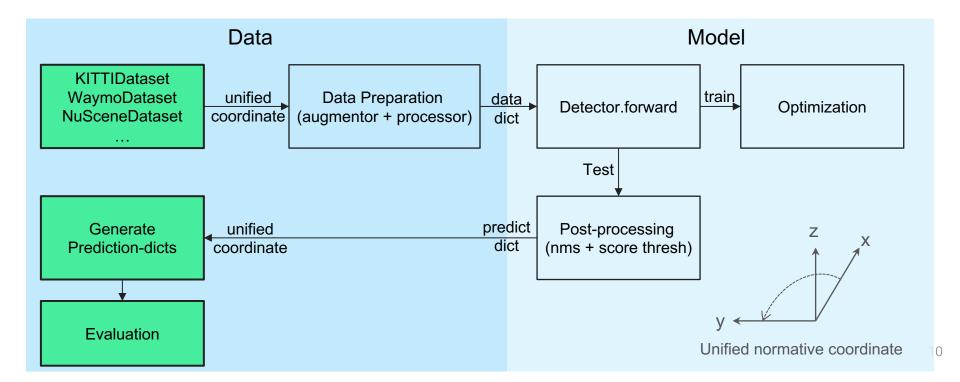
1. Shaoshuai Shi, et al., From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network

Two-stage detector with 3D box refinement



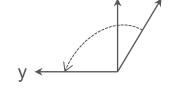
• PV-RCNN: 3D box refinement with RoI-grid pooling

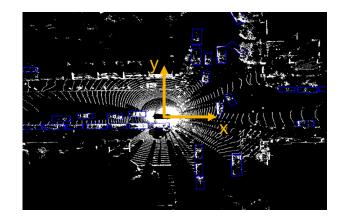
OpenPCDet: 3D Detection Toolbox

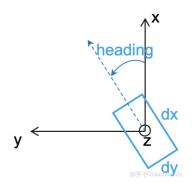


OpenPCDet: Architecture

• Data-Model separation with unified coordinate and box definition across different datasets

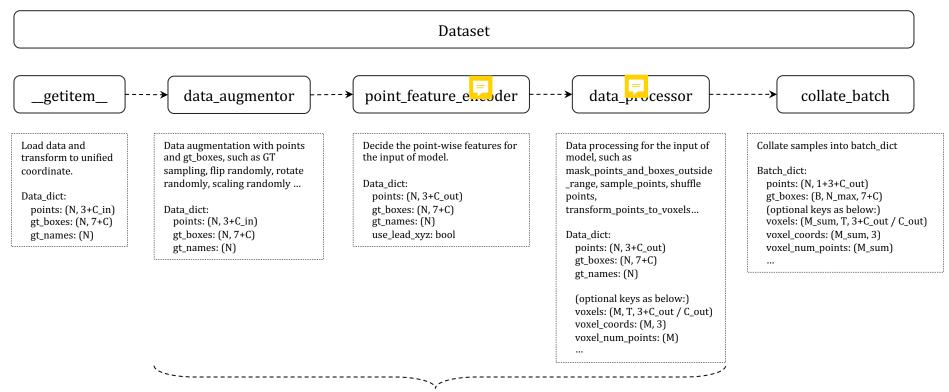



Unified 3D box definition

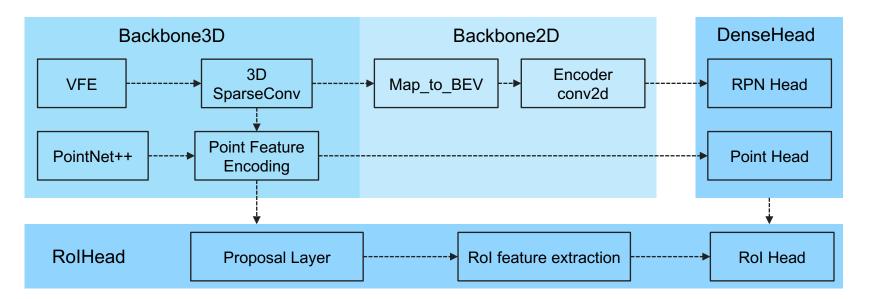

11

OpenPCDet: Unified coordinate and 3D box definition

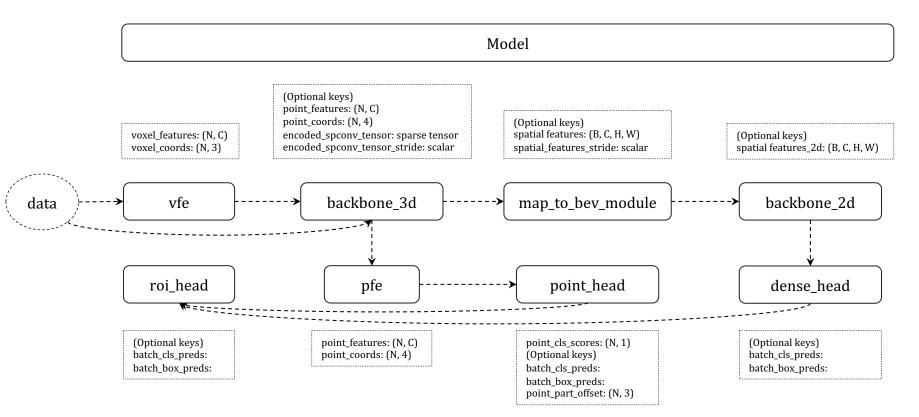
- Unified coordinate:
 - x-axis points towards the front
 - y-axis points towards the left
 - z-axis points towards the up direction
- Unified 3D box definition:
 - (cx, cy, cz, dx, dy, dz, heading)
 - Heading angle: the angle from x-axis to yaxis (heading = 0 for the direction of x-axis)



OpenPCDet: Data flow



OpenPCDet: Modularization



- Modularization to support various 3D detectors within one framework
 - Backbone: 3D Voxel CNN / Sparse Conv / PointNet++ / 2D CNN
 - DenseHead: Anchor-based / Anchor-free / Point-based
 - RoIHead: proposal generation / RoI Pooling / proposal target assigner

OpenPCDet: Model topology

OpenPCDet: Build detector with configuration dict

- Build your detector with customized configs
 - Detector3DTemplate.build_networks()

```
self.module_topology = [
    'vfe', 'backbone_3d', 'map_to_bev_module', 'pfe',
    'backbone_2d', 'dense_head', 'point_head', 'roi_head'
```

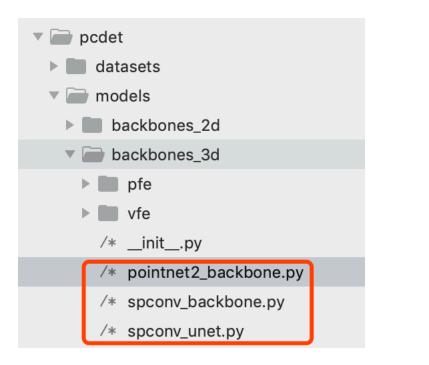
OpenPCDet: Model forward & optimization

- Call each module sequentially with their topology
- Optimization (Calculate the losses within each head):
 - DETECTOR.get_training_loss()
 - HEAD.get_loss()

def forward(self, batch_dict): batch_dict = self.vfe(batch_dict) batch_dict = self.backbone_3d(batch_dict) batch_dict = self.map_to_bev_module(batch_dict) batch_dict = self.backbone_2d(batch_dict) batch_dict = self.dense_head(batch_dict)

1 fi 2	<pre>m .detector3d_template import Detector3DTemplate</pre>
4 c	<pre>ss PointRCNN(Detector3DTemplate):</pre>
	<pre>definit(self, model_cfg, num_class, dataset):</pre>
	<pre>super()init(model_cfg=model_cfg, num_class=num_class, dataset=dataset)</pre>
	<pre>self.module_list = self.build_networks()</pre>
	<pre>def forward(self, batch_dict):</pre>
10	<pre>for cur_module in self.module_list:</pre>
11	<pre>batch_dict = cur_module(batch_dict)</pre>
12	
13	if self.training:
14	<pre>loss, tb_dict, disp_dict = self.get_training_loss()</pre>
15	
16 17	<pre>ret_dict = { 'loss': loss</pre>
18	}
10 19	return ret dict, tb dict, disp dict
20	else:
21	<pre>pred_dicts, recall_dicts = self.post_processing(batch_dict)</pre>
22	return pred_dicts, recall_dicts
23	
24	<pre>def get_training_loss(self):</pre>
25	disp_dict = {}
26	<pre>loss_point, tb_dict = self.point_head.get_loss()</pre>
27	<pre>loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict)</pre>
28	
29	loss = loss_point + loss_rcnn
30	return loss, tb_dict, disp_dict
31	

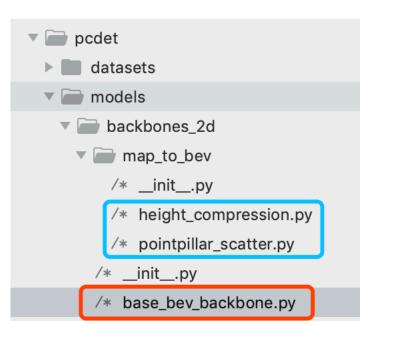
OpenPCDet: DetectorTemplate


- Task: The top module for a detector
 - Build_networks
 - Forward
 - Loss calculation
 - Post_processing (NMS + score threshold)

▼ 📄 pcdet		
datasets		
 models 		
backbones_2d		
backbones_3d		
dense_heads		
detectors	ר	
∕∗initpy		
<pre>/* detector3d_template.py</pre>	,	
/∗ PartA2_net.py		
<pre>/* point_rcnn.py</pre>		
∕∗ pointpillar.py		
∕∗ pv_rcnn.py		
/* second_net.py		

OpenPCDet: 3D backbone networks

- Task: extract voxel-wise / point-wise features
- 3D encoder with sparse convolution (with VFE):
 - VoxelBackBone8x
 - VoxelResBackBone8x
- 3D UNet with sparse convolution (with VFE):
 - UNetV2
- Point-wise networks (PointNet++)
 - PointNet2MSG

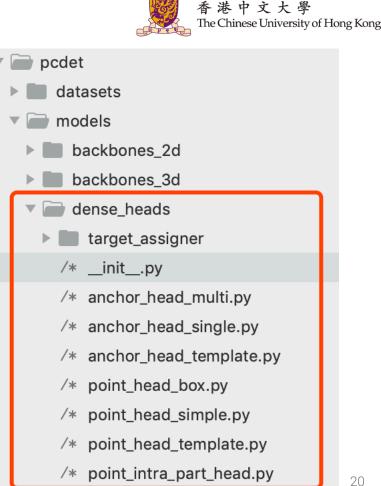


香港中文大學

The Chinese University of Hong Kong

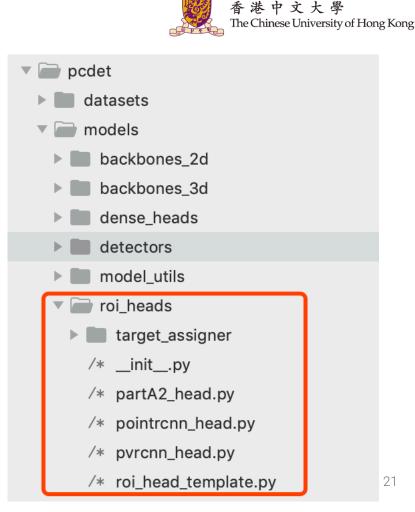
OpenPCDet: 2D backbone networks

- Task: extract 2D feature maps
 - (with map_to_bev_module)
- Map_to_bev_module (map 3D features to 2D maps):
 - HeightCompression
 - PointPillarScatter
- 2D convolution encoder with FPN-like upsampling
 - BaseBEVBackbone



香港中文大學

The Chinese University of Hong Kong


OpenPCDet: Denseheads

- Task: Generate dense 3D boxes
 - Target assigning 0
 - Head loss calculation \bigcirc
- Dense head with BEV features (AnchorHeadTemplate):
 - AnchorHeadSingle Ο
 - AnchorHeadMulti \bigcirc
 - CenterHead (anchor-free) Ο
- Dense head with point-wise features (PointHeadTemplate):
 - PointHeadSimple Ο
 - PointHeadBox \bigcirc
 - PointIntraPartOffsetHead \bigcirc

OpenPCDet: RoIHeads

- Task: Refine 3D proposals with RoI-aligned features
 - Extract RoI-aligned features
 - proposal_layer
 - ProposalTargetLayer
 - Head loss calculation
- Stage-II RoI refinement (RoIHeadTemplate):
 - PointRCNNHead
 - PartA2FCHead
 - PVRCNNHead

OpenPCDet: Configuration files

- Hierarchical configuration with YAML file
- Each model takes its own config

1 CLASS_N/	<pre>MES: ['Car', 'Pedestrian', 'Cyclist']</pre>	<pre>class DatasetTemplate(torch_data.Dataset):</pre>	
2			None):
3 DATA_CO		<pre>super()init()</pre>	
4 _BA	<pre>SE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml</pre>		
5			
6		<pre>class Detector3DTemplate(nn.Module):</pre>	
7 MODEL:		<pre>definit(self, model_cfg, num_class, dataset):</pre>	
	E: SECONDNet		
9			
10 VFE			
11	NAME: MeanVFE		
12		<pre>v class AnchorHeadTemplate(an_Module):</pre>	
	KBONE_3D:	<pre>v class Anchornead Comparison of the second se</pre>	
14	NAME: VoxelBackBone8x		
15 10			
	_T0_BEV: 🚥		
19			
20 BACI 28	KBONE_2D:		
	SE HEAD:		
29 DEN. 86	SE_READ:		
	PROCESSING:		
100 FUS			
100 101			
	ATION: 🚥		00
122			22

OpenPCDet example: Build one-stage detector

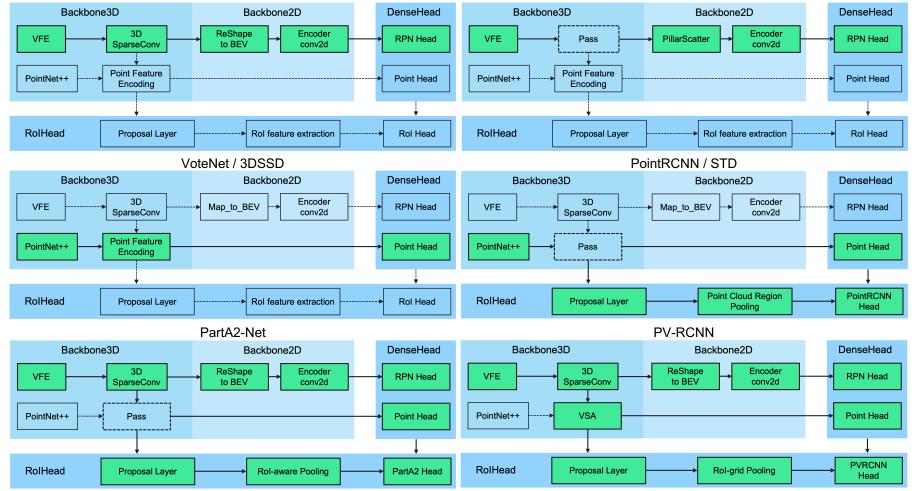
• SECOND / PointPillar

	CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2	
2 3	DATA_CONFIG:
	<pre>BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.ya</pre>
	MODEL:
8	NAME: SECONDNet
10	VFE:
11	NAME: MeanVFE
12	
13	BACKBONE 3D:
14	NAME: VoxelBackBone8x
15	
16	MAP_TO BEV: ==
19	
20	BACKBONE_2D:
28	
29	DENSE HEAD:
86	
87	POST PROCESSING: ==
100	
101	
102	OPTIMIZATION:
122	
122	

1	<pre>CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']</pre>
2	
3	DATA_CONFIG:
49	
50	MODEL:
51	NAME: PointPillar
52	
53	VFE: 🚥
59	
60	MAP_TO_BEV: 🚥
63	
64	BACKBONE_2D: 🚥
71	
72	DENSE_HEAD: 🚥
129	
130	POST_PROCESSING: 🚥
143	
144	
145	OPTIMIZATION:
165	

OpenPCDet example: Build two-stage detector

• PointRCNN / PV-RCNN


1	CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2 3	
3	DATA_CONFIG:
21	
22	MODEL:
23	NAME: PointRCNN
24	
25	BACKBONE_3D: 🚥
36	·
37	POINT_HEAD: ==
62	
63	ROI_HEAD: 🚥
125	
126	POST_PROCESSING:
139	
140	
141	OPTIMIZATION: ••
161	

1	CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2 3	DATA_CONFIG:
31	
32	MODEL:
33	NAME: PVRCNN
34	
35	VFE:
36	NAME: MeanVFE
37	
38 39	BACKBONE_3D: NAME: VoxelBackBone8x
- 59 - 40	NAME: VOXetbackboneox
40	MAP_TO_BEV:
44	
45	BACKBONE_2D: ==
53	
54	DENSE_HEAD: ==
111	
112	PFE:
145	
146	POINT_HEAD: 🚥
158	
159 214	ROI_HEAD: ••
214	POST_PROCESSING: -
228	
229	
230	OPTIMIZATION: ==
250	

PointRCNN

VoxelNet / SECOND / VoxelFPN

PointPillar / PIXOR / CenterPoint

OpenPCDet: 3D Detection Toolbox

- How to add customized dataset ?
 - 1. Write your own DatasetModule that inherited from DatasetTemplate
 - 2. Overload the self.__getitem__() function to load point clouds / gt_boxes and transform them to the unified coordinate and box definition of OpenPCDet
 - 3. Call self.prepare_data() to process the data
 - 4. Overload the self.generate_prediction_dicts() function to transform the predicted results to the format what you like.
 - 5. Overload the self.evaluation() function to evaluate the results with your own metric.

OpenPCDet: 3D Detection Toolbox

- How to support more models ?
 - 1. Write your own detector that inherited from DetectorTemplate
 - 2. Write your own configuration files
 - 3. Write your own modules to specific directories if we do not provide it
 - 4. Overload the forward() functionn
 - 5. Overload the get_training_loss() function

OpenPCDet: Tips with OpenPCDet

- Group the configuration files into different directories
- Multi-gpu training and multi-gpu testing
- View the training process in the tensorboard
- Start a separate evaluation program for fast training
- The following command line parameters are useful:
 - --extra_tag
 - --pretrained_model
 - --set
 - --eval_tag
 - --eval_all

Training script:

bash scripts/dist_train.sh 8 --cfg_file cfgs/kitti_models/pv_rcnn.yaml --extra_tag ex1_tag --set OPTIMIZATION. LR 0.03

Testing script:

sh scripts/dist_test.sh 8 --cfg_file cfgs/kitti_models/pv_rcnn.yaml --extra_tag ex1_tag --eval_all --eval_tag nms02 --set MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH 0.2

Q & A

Welcome to Star / Fork / PR to OpenPCDet (https://github.com/open-mmlab/OpenPCDet)

Shaoshuai Shi Ph.D. Student of Multimedia Laboratory The Chinese University of Hong Kong

