
OpenPCDet: An Open-source Toolbox for 3D
Object Detection from Point Clouds

Shaoshuai	Shi
Ph.D.	Student	of	Multimedia	Laboratory
The	Chinese	University	of	Hong	Kong

Nov. 30, 2020



● Introduction	to	3D	object	detection	from	point	clouds	
● Feature	learning	from	point	clouds	(voxel-based	vs.	point-based)
● 3D	box	generation	(anchor-based	vs.	anchor-free)
● Two-stage detector with 3D	box	refinement

● OpenPCDet architecture and experiments

Outline

2



3

Feature learning from point clouds

● 2D CNN with bird’s view representation
● 3D Voxel CNN (or sparse conv) with Voxel

Feature Encoding (VFE)
● PointNet++ series
● Combination of the above strategies

Reference

1. Xiaozhi Chen, et al., Multi-View 3D Object Detection Network for Autonomous Driving

2. Yin Zhou, et al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

3. Charles Qi, et al., PointNet++: Deep Hierarchical Feature Learning onPoint Sets in a Metric Space



4

Anchor-based 3D box generation

● Generate 3D boxes by selecting and tuning pre-defined 3D anchors on the bird-view 2D
feature maps

Reference

1. Yan Yan, et al., SECOND: Sparsely EmbeddedConvolutional Detection

2. Bin Yang, et al., PIXOR: Real-time 3D Object Detection from Point Clouds

3. Alex H. Lang, et al., PointPillars: Fast Encoders for Object Detection from Point Clouds

4. Yin Zhou, et al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

PIXOR
SECOND

PointPillarVoxelNet



5

Anchor-free 3D box generation

● Generating 3D box without predefined dense anchors

Reference

1. Shaoshuai Shi, et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

2. Charles Qi, et al., Deep Hough Voting for 3D Object Detection in Point Clouds

3. Tianwei Yin, et al., Center-based 3D Object Detection and Tracking

PointRCNN

VoteNet CenterPoint



6

Two-stage detector with 3D box refinement

● PointRCNN: 3D box refinement with point cloud region pooling

Reference

1. Shaoshuai Shi, et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud



7

Two-stage detector with 3D box refinement

● Part-A2-Net: 3D box refinement with RoI-aware point cloud pooling

Reference

1. Shaoshuai Shi, et al., From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network



8

Two-stage detector with 3D box refinement

● PV-RCNN: 3D box refinement with RoI-grid pooling

Reference

1. Shaoshuai Shi, et al., PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection



9

OpenPCDet: 3D Detection Toolbox

Training / evaluation / visualization tools and configuration files

Data processing/loader and dataset-specific evaluation tools

Model definition and forward/backward codes

Customized operations (C++ / CUDA codes) for 3D detection

Common utilized codes and loss utilized codes for 3D detection

Store the data and train/val splits



10

OpenPCDet: Architecture

● Data-Model separation with unified coordinate and box definition across different datasets

KITTIDataset
WaymoDataset
NuSceneDataset

…

Data Preparation
(augmentor + processor) Detector.forward

Post-processing
(nms + score thresh)

Optimization

Generate
Prediction-dicts

unified
coordinate

unified
coordinate

data
dict

predict
dict

Evaluation

train

Test

Data Model

Unified normative coordinate

x

y

z



OpenPCDet: Unified coordinate and 3D box definition

● Unified coordinate:
○ x-axis points towards the front
○ y-axis points towards the left
○ z-axis points towards the up direction

● Unified 3D box definition:
○ (cx, cy, cz, dx, dy, dz, heading)
○ Heading angle: the angle from x-axis to y-

axis (heading = 0 for the direction of x-axis)

x

y

z

Unified normative coordinate 11Unified 3D box definition

x

y



12

OpenPCDet:	Data	flow

Dataset

__getitem__ data_augmentor point_feature_encoder data_processor

Load	data	and	
transform	to	unified	
coordinate.

Data_dict:	
points:	(N,	3+C_in)
gt_boxes:	(N,	7+C)
gt_names:	(N)

Data	augmentation	with	points	
and	gt_boxes,	such	as	GT	
sampling,	flip	randomly,	rotate	
randomly,	scaling	randomly	…

Data_dict:
points:	(N,	3+C_in)
gt_boxes:	(N,	7+C)
gt_names:	(N)

Decide	the	point-wise	features	for	
the	input	of	model.

Data_dict:
points:	(N,	3+C_out)
gt_boxes:	(N,	7+C)
gt_names:	(N)
use_lead_xyz:	bool

Data	processing	for	the	input	of	
model,	such	as	
mask_points_and_boxes_outside
_range,	sample_points,	shuffle	
points,	
transform_points_to_voxels…

Data_dict:
points:	(N,	3+C_out)
gt_boxes:	(N,	7+C)
gt_names:	(N)

(optional	keys	as	below:)
voxels:	(M,	T,	3+C_out	/	C_out)
voxel_coords:	(M,	3)
voxel_num_points:	(M)
…

collate_batch

Collate	samples	into	batch_dict

Batch_dict:
points:	(N,	1+3+C_out)
gt_boxes:	(B,	N_max,	7+C)	
(optional	keys	as	below:)
voxels:	(M_sum,	T,	3+C_out	/	C_out)
voxel_coords:	(M_sum,	3)
voxel_num_points:	(M_sum)
…

self.prepare_data

petros
Notiz
absolute_coordinates_encoding
and
num_point_features are important.


petros
Notiz
here you need:
mask_points_and_boxes_outside_range, shuffle_points (avoid patttern learning by algortihm), the rest of the functions do only apply when using training. For a pure data augmentor they aren't necessary.



OpenPCDet: Modularization

● Modularization to support various 3D detectors within one framework
○ Backbone: 3D Voxel CNN / Sparse Conv / PointNet++ / 2D CNN
○ DenseHead: Anchor-based / Anchor-free / Point-based
○ RoIHead: proposal generation / RoI Pooling / proposal target assigner

VFE 3D
SparseConv

PointNet++ Point Feature
Encoding

Map_to_BEV Encoder
conv2d RPN Head

Point Head

RoI feature extraction RoI Head

Backbone3D Backbone2D DenseHead

RoIHead Proposal Layer
13



14

OpenPCDet: Model topology

vfe map_to_bev_module backbone_2d

dense_headpoint_headroi_head

backbone_3d

voxel_features:	(N,	C)
voxel_coords:	(N,	3)

(Optional	keys)
point_features:	(N,	C)
point_coords:	(N,	4)
encoded_spconv_tensor:	sparse	tensor
encoded_spconv_tensor_stride:	scalar

(Optional	keys)
spatial	features:	(B,	C,	H,	W)
spatial_features_stride:	scalar

(Optional	keys)
spatial	features_2d:	(B,	C,	H,	W)

pfe

(Optional	keys)
batch_cls_preds:		
batch_box_preds:

point_cls_scores:	(N,	1)		
(Optional	keys)
batch_cls_preds:		
batch_box_preds:
point_part_offset:	(N,	3)

point_features:	(N,	C)
point_coords:	(N,	4)

(Optional	keys)
batch_cls_preds:		
batch_box_preds:

data

Model



OpenPCDet: Build detector with configuration dict

● Build your detector with customized configs
○ Detector3DTemplate.build_networks()

15



OpenPCDet: Model forward & optimization

● Call each module sequentially with their
topology

● Optimization (Calculate the losses within each
head):
○ DETECTOR.get_training_loss()
○ HEAD.get_loss()

16



OpenPCDet: DetectorTemplate

● Task: The top module for a detector
○ Build_networks
○ Forward
○ Loss calculation
○ Post_processing (NMS + score threshold)

17



OpenPCDet: 3D backbone networks

● Task: extract voxel-wise / point-wise features

● 3D encoder with sparse convolution (with VFE):
○ VoxelBackBone8x
○ VoxelResBackBone8x

● 3D UNet with sparse convolution (with VFE):
○ UNetV2

● Point-wise networks (PointNet++)
○ PointNet2MSG

18



OpenPCDet: 2D backbone networks

● Task: extract 2D feature maps
○ (with map_to_bev_module)

● Map_to_bev_module (map 3D features to 2D maps):
○ HeightCompression
○ PointPillarScatter

● 2D convolution encoder with FPN-like upsampling
○ BaseBEVBackbone

19



OpenPCDet: Denseheads

● Task: Generate dense 3D boxes
○ Target assigning
○ Head loss calculation

● Dense head with BEV features (AnchorHeadTemplate):
○ AnchorHeadSingle
○ AnchorHeadMulti
○ CenterHead (anchor-free)

● Dense head with point-wise features (PointHeadTemplate):
○ PointHeadSimple
○ PointHeadBox
○ PointIntraPartOffsetHead

20



OpenPCDet: RoIHeads

● Task: Refine 3D proposals with RoI-aligned features
○ Extract RoI-aligned features
○ proposal_layer
○ ProposalTargetLayer
○ Head loss calculation

● Stage-II RoI refinement (RoIHeadTemplate):
○ PointRCNNHead
○ PartA2FCHead
○ PVRCNNHead

21



22

OpenPCDet: Configuration files

● Hierarchical	configuration with YAML file
● Each model takes its own config



23

OpenPCDet example: Build one-stage detector

● SECOND / PointPillar

SECOND
PointPillar



24

OpenPCDet example: Build two-stage detector

● PointRCNN / PV-RCNN

PointRCNN PV-RCNN



25

VoxelNet / SECOND / VoxelFPN PointPillar / PIXOR / CenterPoint

VoteNet / 3DSSD PointRCNN / STD

PartA2-Net PV-RCNN



OpenPCDet: 3D Detection Toolbox

● How to add customized dataset ?

1. Write your own DatasetModule that inherited from DatasetTemplate

2. Overload the self.__getitem__() function to load point clouds / gt_boxes and transform

them to the unified coordinate and box definition of OpenPCDet

3. Call self.prepare_data() to process the data

4. Overload the self.generate_prediction_dicts() function to transform the predicted results

to the format what you like.

5. Overload the self.evaluation() function to evaluate the results with your own metric.

26



OpenPCDet: 3D Detection Toolbox

● How to support more models ?

1. Write your own detector that inherited from DetectorTemplate

2. Write your own configuration files

3. Write your own modules to specific directories if we do not provide it

4. Overload the forward() functionn

5. Overload the get_training_loss() function

27



OpenPCDet: Tips with OpenPCDet

● Group the configuration files into different directories

● Multi-gpu training and multi-gpu testing

● View the training process in the tensorboard

● Start a separate evaluation program for fast training

● The following command line parameters are useful:

○ --extra_tag

○ --pretrained_model

○ --set

○ --eval_tag

○ --eval_all

28

Training script:
bash scripts/dist_train.sh 8	--cfg_file cfgs/kitti_models/pv_rcnn.yaml --extra_tag ex1_tag	--set OPTIMIZATION. LR 0.03

Testing script:
sh scripts/dist_test.sh 8	--cfg_file cfgs/kitti_models/pv_rcnn.yaml --extra_tag ex1_tag	--eval_all --eval_tag nms02	--set	
MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH	0.2



29

Q & A

Welcome to Star / Fork / PR to
OpenPCDet (https://github.com/open-mmlab/OpenPCDet)

Shaoshuai Shi

Ph.D. Student of Multimedia Laboratory

The Chinese University of Hong Kong



30

Thanks

Shaoshuai Shi

Ph.D. Student of Multimedia Laboratory

The Chinese University of Hong Kong

Stamp




