
Smart Contract Code

Review And Security

Analysis Report

Customer: Credbull

Date: 17/12/2024

We express our gratitude to the Credbull team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

Credbull manages the first licensed on-chain private credit fund that emphasizes governance

and transparency in strategy, risk management, and off-chain asset allocation. This is done

through Vaults that will provide ERC1155 tokens (shares) to users in exchange for their ERC20

USDC (assets) deposits. Users will later be able to redeem their shares for to recover their

deposits and some extra yield, generated from an off-chain strategy.

Document

Name

Smart Contract Code Review and Security Analysis Report for

Credbull

Audited By David Camps Novi, Paul Clemson

Approved By Ataberk Yavuzer

Website https://credbull.io/

Changelog 23/10/2024 - Preliminary Report

17/12/2024 - Final Report

Platform Plume Network

Language Solidity

Tags Vault, Proxy, ERC1155

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/credbull/credbull-defi

Commit Initial commit - a3316f3; final commit - e38e285.

2

https://www.plumenetwork.xyz/
https://hackenio.cc/sc_methodology
https://github.com/credbull/credbull-defi

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

7 7 0 0

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 1

High 2

Medium 0

Low 3

Vulnerability Severity

F-2024-6592 - Incorrect validation of spender approval in _withdraw allows theft of

user funds

Critical

F-2024-6665 - Public method allows malicious users to cause DoS on other users

withdrawals

High

F-2024-6713 - Users can earn yield while depositing funds for only a few seconds High

F-2024-6693 - The optimize function fails for deposit/redeem amounts less than $1 Low

F-2024-6700 - Redeem Requests Cannot be Cancelled or Modified Until Redeem

Period

Low

F-2024-6708 - Optimize function receives incorrect owner in requestRedeem

leading to incorrect request data being stored

Low

F-2024-6699 - Incorrect Order of Parameters Result in Wrong Calculations Info

3

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/47fdcfc8-a8b1-4b27-bbd8-a29ebbd5b26d
https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/ca61b85f-4b1d-49d7-9e75-fa8c64a8fd6a
https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/ae0bee4a-cf01-4796-b39c-3aba3eecf1e7
https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/1a142136-7f89-4697-a870-069673d1f20b
https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/9298ee95-5001-449a-a849-037166cc58ea
https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/22f2260f-2887-4d2c-901a-19290717867d
https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/ec1516db-ac09-406a-ae5d-dc35683d9e1a

Documentation quality

Functional requirements are provided.

Technical description are provided.

Code quality

NatSpec is included.

The development environment is configured.

Test coverage

Code coverage of the project is 95% (branch coverage).

Deployment and basic user interactions are covered with tests.

4

Table of Contents

System Overview 6

Privileged Roles 6

Potential Risks 7

Findings 8

Vulnerability Details 8

Observation Details 27

Disclaimers 30

Appendix 1. Definitions 31

Severities 31

Potential Risks 31

Appendix 2. Scope 32

Appendix 3. Additional Valuables 34

System Overview

Credbull manages the first licensed on-chain private credit fund that emphasizes governance

and transparency in strategy, risk management, and off-chain asset allocation. This is done

through Vaults that will provide ERC-1155 tokens (shares) to users in exchange for their ERC20

USDC (assets) deposits. Users will later be able to redeem their shares for to recover their

deposits and some extra yield, generated from an off-chain strategy.

The project consists of the following contracts:

AbstractYieldStrategy.sol - calculates the number of periods based on the input time

bonds.

CalcDiscounted.sol - helper library to calculate principals and yields.

CalcInterestMetadata.sol - defines context variables.

CalcSimpleInterest.sol - helper library to calculate yield.

RedeemOptimizerFIFO.sol - provides the optimal withdrawal requests based on the

desired shares or assets to be obtained.

Timer.sol - helper library to calculate periods and timestamps.

TripleRateContext.sol - defines context variables.

LiquidContinuousMultiTokenVault.sol - main entry-point of the protocol for the users

to deposit and withdraw assets in exchange for some shares/yield.

MultiTokenVault.sol - baseline vault contract inherited by the

LiquidContinuousMultiTokenVault.

TimelockAsyncUnlock.sol - manages the requests to unlock assets from the vault.

SimpleInterestYieldStrategy.sol - defines a yield strategy based on the number of

periods.

TripleRateYieldStrategy.sol - defines a yield strategy based on a combination of full

maturity periods and the other periods.

Privileged roles

Operator can

Change the addresses of _redeemOptimizer , _yieldStrategy .

Set a new interest rate and the vault start timestamp.

Pause and unpause the contract.

Lock the tokens of a user (requires ERC20 allowance).

Upgrader can

Upgrade the vault contracts.

Asset Manager can

Withdraw assets from the vault.

6

Potential Risks

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the

PUSH0 (0x5f) opcode. This opcode is currently supported on the Ethereum mainnet but may

not be universally supported across other blockchain networks. Consequently, deploying

the contract on chains other than the Ethereum mainnet, such as certain Layer 2 (L2)

chains or alternative networks, might lead to compatibility issues or execution errors due

to the lack of support for the PUSH0 opcode. In scenarios where deployment on various

chains is anticipated, selecting an appropriate Ethereum Virtual Machine (EVM) version

that is widely supported across these networks is crucial to avoid potential operational

disruptions or deployment failures.

The funds held by the contract depend on their correct management by the system

admins: they must ensure the contract will always have the required funds to fulfil each

redeem request with the corresponding interest.

The project iterates over large dynamic arrays, which leads to excessive gas costs, risking

denial of service due to out-of-gas errors, directly impacting contract usability and

reliability.

The project's contracts are upgradable, allowing the administrator to update the contract

logic at any time. While this provides flexibility in addressing issues and evolving the

project, it also introduces risks if upgrade processes are not properly managed or secured,

potentially allowing for unauthorized changes that could compromise the project's

integrity and security.

The yield strategy used in the protocol is defined by the system role OPERATOR_ROLE , relying

on their correct setup to have a proper functioning of the yield calculations.

In the TripleRateYieldStrategy contract, if a deposit was made prior to the latest interest

valid timestamp, the system will take into account the previous period's interest in order

to compute the yield obtained by the user. However, this check assumes there is only a

single previous interest period (i.e. current interest plus a previous period only); if there

was an even earlier interest period (i.e. current interest plus two previous periods), or

more, the earliest periods would not be taken into account. Although it is technically

possible to have more than two interest periods, the development team communicated

that each vault will never have more than two.

The system includes a pausable feature, which allows the OPERATOR_ROLE to halt any transfer

of shares at will: deposits, withdraws and token transfers cannot execute.

Protocol users should note that yield will be calculated for deposits up to the period in

which they perform a request for redeeming their funds. If, per example, the notice period

to withdraw funds is 5 days, none of these 5 days will be accounted for yield calculations.

7

Findings

Vulnerability Details

F-2024-6592 - Incorrect validation of spender approval in

_withdraw allows theft of user funds - Critical

Description: The MultiTokenVault is an ERC-4626 inspired vault implementation

which allows users to deposit ERC-20 ASSET tokens and earn a yield

on the deposited principal. In return they receive ERC-1155 tokens

equal to the amount of ASSET they deposited.

When later a user attempts to withdraw their ASSET token (as well as

any earned yield) from the MultiTokenVault the internal _withdraw

function contains a check to confirm that the user attempting to

withdraw (the caller) is either the owner of the ERC-1155 shares

tokens, or that they have been given approval by the owner to spend

their tokens.

However the current implementation of this check instead allows

users who have not been approved by the token's owner to transfer

funds, while not allowing users who have received approval to

proceed.

 if (caller != owner && isApprovedForAll(owner, caller)) {

 revert MultiTokenVault__CallerMissingApprovalForAll(caller, owner)

;

 }

This error, combined with the caller being allowed to specify their

own receiver address in the user facing redeemForDepositPeriod function

(which calls the previously mentioned _withdraw function) will mean

that a malicious user is able to withdraw any other users tokens to

an address that they control, leading to a significant risk of the loss

of all funds in the protocol.

Assets:

token/ERC1155/MultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

Status: Fixed

Classification

8

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/47fdcfc8-a8b1-4b27-bbd8-a29ebbd5b26d

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Critical

Recommendations

Remediation: The approval check in _withdraw should be changed to the

!isApprovedForAll(owner, caller) in order to prevent this issue to occur:

 if (caller != owner && !isApprovedForAll(owner, caller)) {

 revert MultiTokenVault__CallerMissingApprovalForAll(caller, owner)

;

 }

Resolution: Fixed in commit ID d860230 : the reported check was updated as

recommended to

 if (caller != owner && !isApprovedForAll(owner, caller)) {

 revert MultiTokenVault__CallerMissingApprovalForAll(caller, owner)

;

 }

Evidences

Foundry Proof of Concept

Reproduce:
Add the following tests to MultiTokenVault.t.sol to confirm this issue:

 // Confirm address with approval cannot spend users tokens

 function test_ApprovedWithdrawalNotAllowed() public {

 uint256 assetToSharesRatio = 1;

 IMultiTokenVault vault = _createMultiTokenVault(_asset, assetToSharesR

atio, 10);

 address vaultAddress = address(vault);

 uint256 depositPeriod = _testParams1.depositPeriod;

 _warpToPeriod(vault, depositPeriod);

 // Alice deposits into the vault

 vm.startPrank(_alice);

 _asset.approve(vaultAddress, _testParams1.principal);

9

 vault.deposit(_testParams1.principal, _alice);

 // Alice approves bob as a spender of her shares

 vault.setApprovalForAll(_bob, true);

 vm.stopPrank();

 // Move forward in time

 uint256 redeemPeriod = _testParams1.redeemPeriod;

 _warpToPeriod(vault, redeemPeriod);

 // Need to send the earned yield to the vault to cover the withdrawal

 deal(address(_asset), address(vault), 5e9);

 // Bob cannnot withdraw alices tokens despite having permission

 vm.prank(_bob);

 vm.expectRevert();

 vault.redeemForDepositPeriod(_testParams1.principal, _bob, _alice, _te

stParams1.depositPeriod, _testParams1.redeemPeriod);

 }

 // Confirm address without approval can withdraw users tokens

 function test_UnapprovedWithdrawalAllowed() public {

 uint256 assetToSharesRatio = 1;

 IMultiTokenVault vault = _createMultiTokenVault(_asset, assetToSharesR

atio, 10);

 address vaultAddress = address(vault);

 uint256 depositPeriod = _testParams1.depositPeriod;

 _warpToPeriod(vault, depositPeriod);

 // Alice deposits to the vault

 vm.startPrank(_alice);

 _asset.approve(vaultAddress, _testParams1.principal);

 vault.deposit(_testParams1.principal, _alice);

 vm.stopPrank();

 // Mo

See more

10

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/47fdcfc8-a8b1-4b27-bbd8-a29ebbd5b26d

F-2024-6665 - Public method allows malicious users to cause DoS

on other users withdrawals - High

Description: The LiquidContinuousMultiTokenVault is an ERC-4626 inspired vault

implementation which allows users to deposit ERC-20 ASSET tokens

and earn a yield on the deposited principal. In return they receive

ERC-1155 tokens equal to the amount of ASSET they deposited. This

contract builds on the MultiTokenVault to add a number of features

including a two step withdrawal process where the user must first

call requestSell , then wait a specified time period before then calling

executeSell to complete the withdrawal of their assets.

To handle this necessary wait period the contract inherits

TimelockAsyncUnlock which stores data on the users unlock request

during the requestSell logic flow, and then removes it once the user

calls executeSell .

 function unlock(address owner, uint256 requestId) public virtual

 returns (uint256[] memory depositPeriods, uint256[] memory amounts) {

 }

 function _unlock(address owner, uint256 depositPeriod, uint256 requestId,

uint256 amountToUnlock) public virtual {

 }

However the problem arises because the unlock and _unlock functions

in TimelockAsyncUnlock have public visibility allowing users to call them

outside of the LiquidContinuousMultiTokenVault withdrawal context,

meaning the requests will be deleted but the underlying tokens will

not be transferred. Additionally these functions allow the caller to

pass any owner meaning they can be used to delete the withdrawal

request of any user.

It should be noted that this does not cause an instant permanent

locking of funds because the affected user is able to create another

withdrawal request, and attempt to withdraw their funds again after

waiting the specified timelock period. However a sophisticated

attacker could keep track of a user's unlock time and use a bot to

repeatedly call unlock on their pending withdrawal request as soon as

the request's timelock period is over, making it very difficult for a

regular user to successfully withdraw their funds.

The economic viability of prolonging this type of attack depends on

both the transaction costs on the blockchain in question as well as

the sizes of the withdrawals the attacker is able to grief. As this

protocol intends to launch on an Ethereum layer two (Plume) and

11

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/ca61b85f-4b1d-49d7-9e75-fa8c64a8fd6a

has intentions of handling multiple millions of dollars from

institutional size investors it could be the case that a malicious user

is able to seriously halt the withdrawal of significant amounts of

capital for only a few cents per day.

Assets:

timelock/TimelockAsyncUnlock.sol

[https://github.com/credbull/credbull-defi]

yield/LiquidContinuousMultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

Remediation: The unlock and _unlock functions in TimelockAsyncUnlock should both

have internal visibility as a user calling them outside of the full

context of token withdrawal causes unintended consequences in the

system.

Resolution: Fixed in commit ID d860230 : the _unlock function visibility was changed

to internal , and a the following check was added into unlock to ensure

shares can only be unlock by their owners.

function _authorizeCaller(address caller, address owner) internal virtual {

 if (caller != owner) {

 revert TimelockAsyncUnlock__AuthorizeCallerFailed(caller, owner);

 }

}

Evidences

Foundry Proof of Concept

12

Reproduce:
Add the following test to LiquidContinuousMultiTokenVault.t.sol to confirm

this issue:

 function test_MaliciousUnlock() public {

 LiquidContinuousMultiTokenVault liquidVault = _liquidVault; // _create

LiquidContinueMultiTokenVault(_vaultParams);

 TestParam memory testParams = TestParam({ principal: 2_000 * _scale, d

epositPeriod: 11, redeemPeriod: 70 });

 uint256 sharesAmount = testParams.principal; // 1 principal = 1 share

 // ---------------- buy (deposit) ----------------

 _warpToPeriod(liquidVault, testParams.depositPeriod);

 vm.startPrank(alice);

 _asset.approve(address(liquidVault), testParams.principal); // grant t

he vault allowance

 liquidVault.requestBuy(testParams.principal);

 vm.stopPrank();

 _warpToPeriod(liquidVault, testParams.redeemPeriod - liquidVault.notic

ePeriod());

 // Calc Alice's balance before the withdrawal attempt

 uint256 aliceAssetBalanceBefore = _asset.balanceOf(alice);

 console.log("Before", aliceAssetBalanceBefore);

 // requestSell

 vm.prank(alice);

 uint256 aliceRequest = liquidVault.requestSell(testParams.principal);

 // Send alices yield to contract

 deal(address(_asset), address(liquidVault), 5e9);

 _warpToPeriod(liquidVault, testParams.redeemPeriod - liquidVault.notic

ePeriod() + 1);

 // Bob calls unlock on alice's request

 vm.prank(bob);

 liquidVault.unlock(alice, aliceRequest);

 // Confirm alice's assets were not withdrawn by bob calling unlock

 assert(_asset.balanceOf(alice) == aliceAssetBalanceBefore);

 // Alice's sell now reverts because bobs call to unlock cleared the de

posit request without withdrawing alice's tokens

 vm.prank(alice);

 vm.expectRevert(abi.encodeWithSelector(

 LiquidContinuousMultiTokenVault.LiquidContinuousMultiTokenVault__I

nvalidComponentTokenAmount.selector,

See more

13

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/ca61b85f-4b1d-49d7-9e75-fa8c64a8fd6a

F-2024-6713 - Users can earn yield while depositing funds for

only a few seconds - High

Description: In the LiquidContinuousMultiTokenVault contract, users earn yield on their

deposits based on the number of periods (24 hours) that have

passed since their funds were deposited into the protocol. The

number of periods that will be taken into account are calculated by

AbstractYieldStrategy::_noOfPeriods() :

/**

 * @notice Calculate the number of periods in effect for Yield Calculation.

 * @dev Encapsulates the algorithm for determining the number of periods to c

alculate yield with. The calculation is:

 * noOfPeriods = (`to_` - `from_`)

 *

 * @param from_ The from period

 * @param to_ The to period

 * @return noOfPeriods_ The calculated effective number of periods.

 */

function _noOfPeriods(uint256 from_, uint256 to_) internal pure virtual retur

ns (uint256 noOfPeriods_) {

 return to_ - from_;

}

The protocol requires the users to go through a two-step redemption

process: first, the user requests a withdrawal via

LiquidContinuousMultiTokenVault::requestRedeem() during any of the 24 hours

periods, and then they must wait until the noticePeriod() passed in

order to execute the withdrawal through

LiquidContinuousMultiTokenVault::redeem() .

function minUnlockPeriod() public view virtual returns (uint256 minUnlockPeri

od_) {

 return currentPeriod() + noticePeriod();

}

However, the current protocol implementation includes the redeem

period as part of the yield calculation, resulting in an inflation of the

interest obtained by the user:

function convertToAssetsForDepositPeriod(uint256 shares, uint256 depositPerio

d, uint256 redeemPeriod)

 public

 view

 override

14

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/ae0bee4a-cf01-4796-b39c-3aba3eecf1e7

 returns (uint256 assets)

{

 if (shares < SCALE) return 0; // no assets for fractional shares

 if (redeemPeriod < depositPeriod) return 0; // trying to redeem before de

positPeriod

 uint256 principal = shares; // 1 share = 1 asset. in other words 1 share

= 1 principal

 return principal + calcYield(principal, depositPeriod, redeemPeriod);

}

As a result, it is possible for a user to deposit a large amount of

funds shortly before the end of a period, immediately trigger a

redemption request, and then be able to redeem their principal

assets plus one full day's yield shortly afterwards.

This is problematic for two main reasons:

As the funds will only be in the contract for a few seconds the

protocol will not be able to use them for any off chain yield

generating activities, whilst still having to pay out yield to the

user.

The funds used to cover this yield will be funds sitting in the

smart contract, which will likely either be recent deposits of

other users or funds earmarked for other users pending

redemption requests.

Even though the yield accrued via this method is only a small

amount percentage wise, a user with a large amount of capital could

benefit from repeatedly earning a small profit every time with very

little at risk.

This inflated interest exposed above is also affecting the public

methods convertToAssets() , convertToAssetsForDepositPeriodBatch() and

redeemForDepositPeriod() .

Assets:

token/ERC1155/MultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

token/ERC1155/RedeemOptimizerFIFO.sol

[https://github.com/credbull/credbull-defi/]

yield/LiquidContinuousMultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

Status: Fixed

Classification

15

Impact: 3/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Simple

Severity: High

Recommendations

Remediation: The protocol should calculate a deposits earned yield from the

period in which they deposited until redeemPeriod - 1 . This change

would mean users would have to deposit their tokens into the

protocol for at least one full 24 hour period before they start earning

any yield.

Resolution: Fixed in commit ID 968c1f3 : the redeem period is now subtracting the

noticePeriod() , which avoids the inclusion of any extra period beyond

the request for yield calculations.

/// @dev yield accrues up to the `requestRedeemPeriod` (as opposed to the `re

deemPeriod`)

function calcYield(uint256 principal, uint256 depositPeriod, uint256 redeemPe

riod) public view returns (uint256 yield) {

 uint256 requestRedeemPeriod = redeemPeriod > noticePeriod() ? redeemPerio

d - noticePeriod() : 0;

 if (requestRedeemPeriod <= depositPeriod) return 0; // no yield when depo

sit and requestRedeems are the same period

 return _yieldStrategy.calcYield(address(this), principal, depositPeriod,

requestRedeemPeriod);

}

Evidences

Foundry Proof of Concept

Reproduce:
Add the following test to LiquidContinuousMultiTokenVaultTest.t.sol to

highlight this issue:

 function test_AbuseDepositTime() public {

 // Give Vault funds to cover yield

16

 deal(address(_asset), address(_liquidVault), 100e6);

 // Calc Alice's balance at start

 uint256 aliceAssetsStart = _asset.balanceOf(alice);

 vm.warp(block.timestamp + 48 hours - 1);

 // Deposit at the end of a period

 vm.startPrank(alice);

 _asset.approve(address(_liquidVault), 10_000e6);

 _liquidVault.deposit(10_000e6, alice);

 // Immediately request withdraw

 _liquidVault.requestRedeem(10_000e6, address(0), alice);

 vm.stopPrank();

 // New period begins a few seconds later

 vm.warp(block.timestamp + 2);

 // Withdraw

 vm.startPrank(alice);

 _liquidVault.redeem(10_000e6, alice, address(0));

 // Confirm Profit Made

 uint256 aliceAssetsEnd = _asset.balanceOf(alice);

 assert(aliceAssetsEnd > aliceAssetsStart);

 uint256 aliceProfit = aliceAssetsEnd - aliceAssetsStart;

 console.log("Alice Profit", aliceProfit);

 }

Results:
The test returns the following result, signifying alice earned ~$1.53

on her deposit, despite only having her funds in the protocol for 2

seconds.

Alice Profit 1527777

17

F-2024-6693 - The optimize function fails for deposit/redeem

amounts less than $1 - Low

Description: The LiquidContinuousMultiTokenVault allows users to deposit any amount

of tokens and earn a stable yield on their deposits. Depending on the

time period of a specific deposit, a users shares may be eligible to

different rates of yield. The contract's logic includes a call to a

IRedeemOptimizer which is responsible for selecting the shares that

would generate the optimal yield when calling redeem.

RedeemOptimizerFIFO is a basic version of this redeem contract which

simply uses the oldest possible deposits to cover the users redeem

request. During a users call to redeem a call is made to

IRedeemOptimizer::optimize where this process takes place.

However a problem arises when the user is depositing/redeeming

small amounts of tokens (less than $1). In these instances the

optimizer will ignore the smaller values and revert with a

RedeemOptimizer__OptimizerFailed error, suggesting that it has failed to find

the necessary shares required to fulfil the redemption.

This means whenever a users deposit amount over a given period is

a small amount (less than $1), these funds will not be redeemable

causing small amounts of locked user funds.

Assets:

token/ERC1155/RedeemOptimizerFIFO.sol

[https://github.com/credbull/credbull-defi/]

yield/LiquidContinuousMultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

18

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/1a142136-7f89-4697-a870-069673d1f20b

Remediation: The project should introduce a minimum deposit amount to the

LiquidContinuousMultiTokenVault contract to ensure that users cannot

unintentionally end up with stuck funds. All fuzz tests using amounts

> 1e6 ($1 in USDC) did not have this problem, so any minimum

amount of 1e6 or greater should sufficiently mitigate this risk.

Resolution: Fixed in commit ID d860230 : a minimum SCALE value of 10 wei was

implemented, resulting in no dust values anymore.

/// minimum shares required to convert to assets and vice-versa.

function _minConversionThreshold() internal view returns (uint256 minConversi

onThreshold) {

 return SCALE < 10 ? SCALE : 10;

}

Evidences

Foundry Proof of Concept

Reproduce:
The following foundry test will outline this issue

 function test_dust() public {

 // Give Vault funds to cover yield

 deal(address(_simpleAsset), address(_simpleYieldVault), 100_000e6);

 // Alice deposits a small amount

 uint256 dustAmount = 1e6 - 543;

 deal(address(_simpleAsset), alice, dustAmount);

 vm.startPrank(alice);

 _simpleAsset.approve(address(_simpleYieldVault), dustAmount);

 _simpleYieldVault.deposit(dustAmount, alice);

 vm.warp(block.timestamp + 24 hours);

 _simpleYieldVault.requestRedeem(dustAmount, address(0), alice);

 vm.warp(block.timestamp + 24 hours);

 // Redeem will fail for this small depost/redeem combination

 vm.expectRevert()

 _simpleYieldVault.redeem(dustAmount, alice, address(0));

 }

19

F-2024-6700 - Redeem Requests Cannot be Cancelled or Modified

Until Redeem Period - Low

Description: Users will redeem their vault shares in two steps: first, they will call

requestRedeem() in order to create a redeem request, and then they will

execute the request via redeem() . However, the creation of requests is

additive (as far as shares are available) and cannot be deleted. If a

user wants to change the amount to redeem, or cancel the redeem,

it will not be possible; they will be forced to execute the redeem

request.

When a user wants to sell their shares in exchange for assets, they

will call requestRedeem() in LiquidContinuousMultiTokenVault . This will trigger

a query to the RedeemOptimizerFIFO contract, which will return the arrays

containing the user's available shares data (depositPeriods and

sharesAtPeriods), obtained from _sharesAvailableAtPeriod() .

function _sharesAvailableAtPeriod(

 IMultiTokenVault vault,

 OptimizerParams memory optimizerParams,

 uint256 depositPeriod

) internal view returns (uint256 sharesAvailable_) {

 bytes4 timelockInterfaceId = type(ITimelockAsyncUnlock).interfaceId;

 if (vault.supportsInterface(timelockInterfaceId)) {

 ITimelockAsyncUnlock timelockVault = ITimelockAsyncUnlock(address(vau

lt));

 return timelockVault.maxRequestUnlock(optimizerParams.owner, depositP

eriod);

 } else {

 return vault.sharesAtPeriod(optimizerParams.owner, depositPeriod);

 }

}

These arrays of available shares will then be used in requestUnlock() ,

and _handleSingleUnlockRequest() , in order to create the unlock requests

stored in the state variable _unlockRequests :

function _handleSingleUnlockRequest(address owner, uint256 depositPeriod, uin

t256 requestId, uint256 amount)

 internal

 virtual

{

 if (amount > maxRequestUnlock(owner, depositPeriod)) {

 revert TimelockAsyncUnlock__ExceededMaxRequestUnlock(

20

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/9298ee95-5001-449a-a849-037166cc58ea

 owner, depositPeriod, amount, maxRequestUnlock(owner, depositPeri

od)

);

 }

 EnumerableMap.UintToUintMap storage unlockRequestsForRequestId = _unlockR

equests[owner][requestId];

 EnumerableMap.UintToUintMap storage depositPeriodAmountCache = _depositPe

riodAmountCache[owner];

 uint256 unlockAmountByUnlockPeriod =

 unlockRequestsForRequestId.contains(depositPeriod) ? unlockRequestsFo

rRequestId.get(depositPeriod) : 0;

 unlockRequestsForRequestId.set(depositPeriod, unlockAmountByUnlockPeriod

+ amount);

 uint256 unlockAmountByOwner =

 depositPeriodAmountCache.contains(depositPeriod) ? depositPeriodAmoun

tCache.get(depositPeriod) : 0;

 depositPeriodAmountCache.set(depositPeriod, unlockAmountByOwner + amount)

;

}

Due to its design mechanism, the method _handleSingleUnlockRequest()

will only be able to increase the amount of shares to withdraw from

each period. It will not be able to either decrease or override the

amount. Additionally, if a user (Alice) creates a request and sends

some shares to another user (Bob), none of them can withdraw or

create new requests until the redeem period is reached,

As a result, users will not be able to cancel or modify their requests

until they are executed or fail within very specific scenarios (e.g. be

able to increase the amount of shares to withdraw from a single

period).

Assets:

yield/LiquidContinuousMultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

token/ERC1155/RedeemOptimizerFIFO.sol

[https://github.com/credbull/credbull-defi/]

timelock/TimelockAsyncUnlock.sol

[https://github.com/credbull/credbull-defi]

Status: Fixed

Classification

21

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to either implement a method to delete unlock

requests or modify the mechanism to create unlock requests so that

it overrides previous requests stored in _unlockRequests .

Resolution: Fixed in commit ID d860230 : a request can now be cancelled before

the notice period ends with the implementation of the following

method.

/// @dev Cancel a pending request to unlock

function cancelRequestUnlock(address owner, uint256 requestId)

 public

 onlyAuthorized(owner)

{

 (uint256[] memory depositPeriods, uint256[] memory amounts) = unlockReque

sts(owner, requestId);

 for (uint256 i = 0; i < depositPeriods.length; ++i) {

 _unlock(owner, depositPeriods[i], requestId, amounts[i]);

 }

 emit CancelRedeemRequest(owner, requestId, _msgSender());

}

22

F-2024-6708 - Optimize function receives incorrect owner in

requestRedeem leading to incorrect request data being stored -

Low

Description: Within the LiquidContinuousMultiTokenVault contract, withdrawing funds

from the contract requires a two step process. The first of these

steps is calling requestRedeem .

 function requestRedeem(uint256 shares, address, /* controller */ address

owner)

 public

 returns (uint256 requestId_)

 {

 // using optimize() variant in case "shares" represents the IComponen

t "principal + yield" which is our "assets".

 (uint256[] memory depositPeriods, uint256[] memory sharesAtPeriods) =

 _redeemOptimizer.optimize(this, owner, shares, shares, minUnlockP

eriod());

 uint256 requestId = requestUnlock(_msgSender(), depositPeriods, share

sAtPeriods);

 emit RedeemRequest(_msgSender(), owner, requestId, _msgSender(), shar

es);

 return requestId;

 }

This function allows the caller to pass an owner parameter. This

causes an issue for two reasons:

There is no verification that the caller is the owner .

The depositPeriods and sharesAtPeriods arrays are built using this

owner while the actual requestUnlock passed _msgSender() meaning

incorrect data will be stored for the users unlock request if they

pass any owner other than themselves.

This means that if a user passes any owner other than themselves to

requestRedeem their eventual redeem call will fail because the user will

very likely have different depositPeriods and sharesAtPeriods than those

stored during requestRedeem .

Status: Fixed

Classification

23

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/22f2260f-2887-4d2c-901a-19290717867d

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: This issue should be fixed by either:

Not using the owner parameter and instead using _msgSender()

when calling optimize

Requiring that owner == _msgSender() when calling requestRedeem

Resolution: Fixed in commit ID d860230 : the modifiers onlyAuthorized and

onlyController were added into the reported method, making sure only

the owner of the shares can create their own requests.

24

F-2024-6699 - Incorrect Order of Parameters Result in Wrong

Calculations - Info

Description: The public method calcPrice() provides information to any caller

about the pricing obtained for a certain time period in the

corresponding vault contract:

function calcPrice(address contextContract, uint256 numPeriodsElapsed)

 public

 view

 virtual

 returns (uint256 price)

{

 if (address(0) == contextContract) {

 revert IYieldStrategy_InvalidContextAddress();

 }

 ITripleRateContext context = ITripleRateContext(contextContract);

 return CalcSimpleInterest.calcPriceFromInterest(

 numPeriodsElapsed, context.rateScaled(), context.frequency(), context

.scale()

);

}

However, the call CalcSimpleInterest.calcPriceFromInterest() will return

incorrect calculations, resulting in a wrong pricing information. This

is due to the inverted order of the first to parameters introduced,

numPeriodsElapsed and context.rateScaled() , compared to the function

calcPriceFromInterest() :

function calcPriceFromInterest(

 uint256 interestRatePercentScaled,

 uint256 numTimePeriodsElapsed,

 uint256 frequency,

 uint256 scale

) internal pure returns (uint256 priceScaled) {

 uint256 parScaled = 1 * scale;

 uint256 interest = calcInterest(parScaled, interestRatePercentScaled, num

TimePeriodsElapsed, frequency, scale);

 return parScaled + interest;

}

25

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/ec1516db-ac09-406a-ae5d-dc35683d9e1a

Assets:

yield/strategy/TripleRateYieldStrategy.sol

[https://github.com/credbull/credbull-defi]

Status: Fixed

Classification

Impact: 1/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

Remediation: The order of the first two parameters should be inverted to follow

the required order in calcPriceFromInterest()

from:

CalcSimpleInterest.calcPriceFromInterest(

 numPeriodsElapsed, context.rateScaled(), context.frequency(), context.sca

le()

);

to

CalcSimpleInterest.calcPriceFromInterest(

 context.rateScaled(), numPeriodsElapsed, context.frequency(), context.sca

le()

);

Resolution: Fixed in commit ID d860230 : the function call was inverted to follow

the required order in calcPriceFromInterest() :

CalcSimpleInterest.calcPriceFromInterest(

 context.rateScaled(), numPeriodsElapsed, context.frequency(), context.sca

le()

);

26

Observation Details

F-2024-6678 - Floating Pragma - Info

Description: The project uses the floating pragma ^0.8.20 .

This may result in the contracts being deployed using the wrong

pragma version, which is different from the one they were tested with.

For example, they might be deployed using an outdated pragma

version which may include bugs that affect the system negatively.

Assets:

yield/LiquidContinuousMultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

yield/CalcSimpleInterest.sol [https://github.com/credbull/credbull-

defi]

yield/CalcDiscounted.sol [https://github.com/credbull/credbull-

defi]

yield/context/TripleRateContext.sol

[https://github.com/credbull/credbull-defi]

yield/strategy/SimpleInterestYieldStrategy.sol

[https://github.com/credbull/credbull-defi]

yield/strategy/TripleRateYieldStrategy.sol

[https://github.com/credbull/credbull-defi]

timelock/Timer.sol [https://github.com/credbull/credbull-defi]

yield/ICalcInterestMetadata.sol

[https://github.com/credbull/credbull-defi]

yield/context/ITripleRateContext.sol

[https://github.com/credbull/credbull-defi]

yield/strategy/IYieldStrategy.sol

[https://github.com/credbull/credbull-defi]

token/component/IComponentToken.sol

[https://github.com/credbull/credbull-defi]

token/ERC1155/IRedeemOptimizer.sol

[https://github.com/credbull/credbull-defi]

token/ERC1155/IMultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

timelock/ITimelock.sol [https://github.com/credbull/credbull-defi]

timelock/ITimelockAsyncUnlock.sol

[https://github.com/credbull/credbull-defi]

timelock/ITimelockOpenEnded.sol

[https://github.com/credbull/credbull-defi]

token/ERC1155/RedeemOptimizerFIFO.sol

[https://github.com/credbull/credbull-defi/]

timelock/TimelockAsyncUnlock.sol

[https://github.com/credbull/credbull-defi]

27

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/b9f14a15-47df-49fc-afea-210b6ed57d46

yield/strategy/AbstractYieldStrategy.sol

[https://github.com/credbull/credbull-defi]

token/ERC1155/MultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

yield/CalcInterestMetadata.sol

[https://github.com/credbull/credbull-defi]

Status: Accepted

Recommendations

Remediation: It is recommended to lock the pragma version as 0.8.20 instead of

^0.8.20 .

Resolution: The development team accepted the finding and the risks arising

from it.

28

F-2024-6721 - Missing Storage Gaps - Info

Description: When working with upgradeable contracts, it is necessary to

introduce storage gaps to allow for storage extension during

upgrades.

Storage gaps are a convention for reserving storage slots in a base

contract, allowing future versions of that contract to use up those

slots without affecting the storage layout of child contracts.

Note: OpenZeppelin Upgrades checks the correct usage of storage

gaps.

Assets:

yield/CalcInterestMetadata.sol

[https://github.com/credbull/credbull-defi]

Status: Fixed

Recommendations

Remediation:

Introduce Storage Gaps in the affected contracts.

To create a storage gap, declare a fixed-size array in the base

contract with an initial number of slots. This can be an array of

uint256 so that each element reserves a 32 byte slot. Use the name

__gap or a name starting with __gap_ for the array so that

OpenZeppelin Upgrades will recognize the gap.

To help determine the proper storage gap size in the new version of

your contract, you can simply attempt an upgrade using upgradeProxy

or just run the validations with validateUpgrade (see docs for Hardhat

or Truffle). If a storage gap is not being reduced properly, you will

see an error message indicating the expected size of the storage

gap.

Resolution: Fixed in commit ID d860230 : storage gaps were implemented in

CalcInterestMetadata .

29

https://portal.hacken.io/App/Projects/Details/fd818fe5-a20c-478c-b036-cef56993c145/Finding/fd45fd01-0591-4a34-8707-8fc2c7f7afbe
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-hardhat-upgrades
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-truffle-upgrades

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

30

Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but

could still affect the project’s performance, reliability, or user trust. These risks arise from

design choices, architectural decisions, or operational practices that, while not immediately

exploitable, may lead to problems under certain conditions. Additionally, potential risks can

impact the quality of the audit itself, as they may involve external factors or components

beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.

This section aims to provide a broader perspective on factors that could affect the project's

long-term security, functionality, and the comprehensiveness of the audit findings.

31

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/credbull/credbull-defi/

Commit a3316f3

Whitepaper https://docs.credbull.io/docs/litepaper

Requirements
https://github.com/credbull/credbull-defi/blob/docs/liquid-

audit/packages/contracts/docs/src/SUMMARY.md

Technical

Requirements

https://github.com/credbull/credbull-defi/tree/docs/liquid-

audit/packages/contracts#readme

Asset Type

timelock/ITimelock.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

timelock/ITimelockAsyncUnlock.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

timelock/ITimelockOpenEnded.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

timelock/TimelockAsyncUnlock.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

timelock/Timer.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

token/component/IComponentToken.sol [https://github.com/credbull/credbull-

defi]

Smart

Contract

token/ERC1155/IMultiTokenVault.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

token/ERC1155/IRedeemOptimizer.sol [https://github.com/credbull/credbull-

defi]

Smart

Contract

token/ERC1155/MultiTokenVault.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

token/ERC1155/RedeemOptimizerFIFO.sol

[https://github.com/credbull/credbull-defi/]

Smart

Contract

yield/CalcDiscounted.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

yield/CalcInterestMetadata.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

yield/CalcSimpleInterest.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

yield/context/ITripleRateContext.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

32

https://github.com/credbull/credbull-defi/
https://docs.credbull.io/docs/litepaper
https://github.com/credbull/credbull-defi/blob/docs/liquid-audit/packages/contracts/docs/src/SUMMARY.md
https://github.com/credbull/credbull-defi/tree/docs/liquid-audit/packages/contracts#readme

Asset Type

yield/context/TripleRateContext.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

yield/ICalcInterestMetadata.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

yield/LiquidContinuousMultiTokenVault.sol

[https://github.com/credbull/credbull-defi]

Smart

Contract

yield/strategy/AbstractYieldStrategy.sol [https://github.com/credbull/credbull-

defi]

Smart

Contract

yield/strategy/IYieldStrategy.sol [https://github.com/credbull/credbull-defi]
Smart

Contract

yield/strategy/SimpleInterestYieldStrategy.sol

[https://github.com/credbull/credbull-defi]

Smart

Contract

yield/strategy/TripleRateYieldStrategy.sol [https://github.com/credbull/credbull-

defi]

Smart

Contract

33

Appendix 3. Additional Valuables

Verification of System Invariants

During the audit of Credbull, Hacken followed its methodology by performing fuzz-testing on

the project's main functions. Forge foundry fuzz tests were used to test how the protocol

handles a wide variety of inputs. Due to the complex and dynamic interactions within the

protocol, unexpected edge cases might arise. Therefore, it was important to use fuzz-testing

to ensure that several system invariants hold true in all situations.

Fuzz-testing allows the input of many random data points into the system, helping to identify

issues that regular testing might miss. A specific Foundry fuzzing suite was prepared for this

task, and throughout the assessment, 4 invariants were tested over 40,000 runs. This

thorough testing ensured that the system works correctly even with unexpected or unusual

inputs.

Invariant
Test

Result

Run

Count

Earned yield should match expected earned yield

(SimpleInterestYieldStrategy)
Passed* 10,000

Earned yield should match expected earned yield

(TripleRateYieldStrategy)
Passed* 10,000

Withdrawing any amount less than deposit amount should cause no

issues
Passed* 10,000

Users should be able to withdraw full amount after a partial withdraw Passed* 10,000

*Tests passed after ensuring the minimum amount deposited/withdrawn was greater than 1e6

(this issue was raised as part of the audit's findings)

Additional Recommendations

The smart contracts in the scope of this audit could benefit from the introduction of automatic

emergency actions for critical activities, such as unauthorized operations like ownership

changes or proxy upgrades, as well as unexpected fund manipulations, including large

withdrawals or minting events. Adding such mechanisms would enable the protocol to react

automatically to unusual activity, ensuring that the contract remains secure and functions as

intended.

To improve functionality, these emergency actions could be designed to trigger under specific

conditions, such as:

Detecting changes to ownership or critical permissions.

Monitoring large or unexpected transactions and minting events.

Pausing operations when irregularities are identified.

These enhancements would provide an added layer of security, making the contract more

robust and better equipped to handle unexpected situations while maintaining smooth

34

operations.

35

