
IAM and Service Accounts

There is indeed a "general theory" underlying Identity and Access

Management (IAM) across different cloud platforms, and Google's Service

Accounts fit within this framework. Let's break this down systematically.

1. The General Theory of IAM

At its core, IAM (Identity and Access Management) is about controlling who

(identity) can do what (permissions) to which resources under which

conditions. This applies across different cloud providers, including AWS, Azure,

and Google Cloud.

The fundamental components of any IAM system include:

1. Identities (who) – This could be users, groups, or non-human entities like

service accounts.

2. Roles & Policies (what) – Defines the actions allowed for an identity.

3. Resources (which) – The cloud assets being managed.

4. Authentication & Authorization Mechanisms (how) – Methods to verify

and enforce permissions.

5. Conditions & Contexts (under which conditions) – Additional constraints

like time, location, and network.

Compare https://cloud.google.com/iam/docs/service-

account-overview service accounts to how things work

in IAM. I believe there's a "general theory" based on

this.

🚀 Powered by ChatGPT Exporter 1 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Now, let’s compare Google Service Accounts against this framework and other

IAM models.

2. What is a Google Cloud Service Account?

Google Cloud Service Accounts are non-human identities that applications

and workloads use to interact with Google Cloud services. They are a type of

identity within Google IAM.

They are particularly used for:

Granting applications access to Google Cloud APIs.

Managing workload identities without relying on human users.

Enabling cross-cloud and on-prem authentication.

Key Features of Google Cloud Service Accounts

1. Treated Like Identities

They can be assigned IAM roles and permissions.

They can authenticate using OAuth 2.0 or signed JWTs.

They act like "users," but are designed for programs.

2. Used by Compute, Storage, and Other Services

For example, a Google Cloud Run container or a Compute Engine VM can

be assigned a service account to access BigQuery.

3. Key Management & Authentication

They use private key pairs for authentication.

Google manages short-lived credentials for security.

4. Can Act as Other Identities

🚀 Powered by ChatGPT Exporter 2 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

A service account can impersonate another service account.

This enables cross-project and cross-cloud access.

3. Comparing with IAM Models in General

Feature

Google Cloud IAM

(Service Accounts)

AWS IAM (Roles,

Users)

Azure IAM

(Managed

Identities)

Identity Type Service Accounts (Non-

human)

IAM Users, Roles Managed Identities

Role

Assignment

IAM Roles IAM Roles & Policies RBAC, Custom Roles

Key

Management

JSON Private Keys,

OAuth 2.0

Access Keys, STS

Tokens

OAuth Tokens, MSI

Impersonation Yes (via Workload

Identity)

Yes (via AssumeRole) Yes (via Managed

Identity)

Use Case Workload Access to

GCP Services

Cross-account access,

AWS API access

Secure workload

authentication

AWS IAM Comparison

AWS uses IAM Roles instead of Service Accounts.

AWS roles can be assumed using temporary STS credentials, similar to

Google's short-lived tokens.

AWS also has IAM users (which Google Cloud mostly avoids, instead favoring

Google identities).

Azure IAM Comparison

Azure uses Managed Identities, which function similarly to Service

Accounts.

🚀 Powered by ChatGPT Exporter 3 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Azure’s RBAC model enforces permissions rather than Google’s policy-

based IAM.

4. The "General Theory" of IAM: Abstraction

Service Accounts, IAM Roles, and Managed Identities are all different

implementations of the same fundamental principle:

“"A workload or entity (human or non-human) needs an identity to

authenticate itself and request access to resources according to a

policy-based access control system."”

Key Takeaways from the General Theory:

1. Human and Non-Human Identities Exist

Users need authentication (passwords, OAuth, MFA).

Workloads need non-human identities (Service Accounts, IAM Roles,

Managed Identities).

2. Policy-Based Access Control (PBAC) is Universal

Access is granted via policies (Google IAM, AWS Policies, Azure RBAC).

Permissions are role-based, not directly tied to users.

3. Temporary Credentials Improve Security

Google uses Workload Identity Federation for cross-cloud

authentication.

AWS uses STS AssumeRole for temporary session credentials.

Azure uses Managed Identities to issue short-lived tokens.

4. Cross-Account and Cross-Service Delegation Matters

🚀 Powered by ChatGPT Exporter 4 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Service Accounts impersonate other accounts (Google).

AWS assumes roles across accounts.

Azure grants identities scoped permissions.

5. Conclusion: A Unified IAM Model?

Google Service Accounts are just one variation of a general workload

identity pattern in cloud IAM.

AWS IAM Roles and Azure Managed Identities provide similar mechanisms.

The general theory is about workload identity, least privilege access,

and policy-based enforcement.

Would you like me to formalize this into a whitepaper or further refine the

"general theory" into an abstract model?

You're absolutely right—cloud providers name similar concepts differently, which

makes discussions fragmented. A general theory of delegated authority can

unify these concepts into a common model that aligns with Polykey's approach

to secure delegation and workload identity management.

All of these name these things differently which

muddles the discussion. There should a general theory

in relation to Polykey that we can write our

documentation to describe what these things are in

relation to general theory of delegated authority.

🚀 Powered by ChatGPT Exporter 5 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Towards a Unified IAM and Delegated Authority

Model

The core idea is delegation: entities (human or non-human) must be able to

delegate authority securely and with minimal privilege.

1. Core Elements of Delegated Authority

Every IAM system—whether Google IAM, AWS IAM, or Azure RBAC—implements

delegated authority via the following concepts:

1. Principal (Identity)

A human user, a service, or a system that can be authenticated.

Examples:

Google: Users, Service Accounts

AWS: IAM Users, IAM Roles

Azure: Users, Managed Identities

Polykey: Nodes, Agents, Vaults

2. Authority (Permissions)

The set of actions an identity can perform.

Expressed as roles, policies, or permissions.

Examples:

Google: IAM Roles

AWS: IAM Policies

Azure: RBAC Roles

Polykey: Capability-Based Access Control (CBAC)

3. Delegation (Temporary & Derived Permissions)

Identities can delegate authority to other identities.

🚀 Powered by ChatGPT Exporter 6 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

This can be explicit (impersonation) or implicit (derived

credentials).

Examples:

Google: Service Account Impersonation

AWS: STS AssumeRole

Azure: Role Assignment

Polykey: Agent-to-Agent Delegation, Vault Permissions

4. Authentication (Proving Identity)

How identities prove who they are.

Examples:

Google: OAuth Tokens, Signed JWTs

AWS: Access Keys, STS Credentials

Azure: OAuth/MSAL Tokens

Polykey: Cryptographic Identity Keys

5. Revocation (Revoking Delegated Access)

Secure delegation requires revocability.

Examples:

Google: IAM Policy Changes, Key Revocation

AWS: Session Expiry, Policy Updates

Azure: Token Expiry, RBAC Updates

Polykey: Key Revocation, Ephemeral Keys

2. General Theory: IAM as a Delegated Authority

Framework

🚀 Powered by ChatGPT Exporter 7 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

In Polykey's documentation, we can describe these concepts under a unified

theory of delegated authority, abstracting away cloud-specific terminology.

Key Properties of a Delegated Authority Model

Identity is cryptographic: Polykey focuses on cryptographic identities

instead of account-based users.

Capabilities are first-class objects: Unlike role-based IAM, Polykey aligns

more with Capability-Based Access Control (CBAC).

Delegation is explicit: Authority should be granted explicitly, avoiding

implicit trust.

Minimal privilege: Delegation should be scoped and time-bound.

Revocability is essential: Delegation should be easily revocable.

3. Mapping Cloud IAM Concepts to Polykey’s Model

Concept Polykey Term Google IAM AWS IAM Azure IAM

Identity Node, Agent Service Account,

User

IAM User, IAM

Role

User, Managed

Identity

Authority Capability,

Permission

IAM Role, Policy IAM Policy,

Role

RBAC Role

Delegation Delegation Path Impersonation,

Tokens

AssumeRole,

STS

Role Assignment

Authentication Key

Authentication

OAuth, JWTs, GCP

Keys

Access Keys,

STS

OAuth/MSAL

Tokens

Revocation Key Revocation IAM Policy

Updates

Session Expiry RBAC Updates

🚀 Powered by ChatGPT Exporter 8 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Next Steps for Documentation

1. Define a clear "Delegated Authority" model in the Polykey docs.

2. Introduce terminology that standardizes IAM across different cloud

providers.

3. Provide mappings to major cloud IAM systems to help developers

translate concepts.

4. Emphasize cryptographic authentication & CBAC as key differentiators

in Polykey’s approach.

Would you like me to draft a formal documentation section on this?

Can we get a table that relates "Service Account", IAM

Role... etc? How these concepts are identified? The fact

that they are not "users" or real users, so they are

supposed to be "delegated" to some entity/workload

either by them assuming it or something.

IAM Delegated Authority Model

🚀 Powered by ChatGPT Exporter 9 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

I've created a comparative table outlining Service Accounts, IAM Roles,

Managed Identities, API Keys, and other IAM constructs across Google

Cloud, AWS, and Azure. It also includes a generalized model that abstracts

these concepts and their identification methods and delegation

mechanisms.

This should help form a standardized vocabulary for Polykey

documentation, providing a foundation for a unified IAM and delegated

authority model.

Let me know if you need refinements or a different structuring of this model!

Yes, that distinction makes sense in the context of Polykey. Workload identities,

such as service accounts, IAM roles, and managed identities, typically do

not make autonomous decisions but instead function as conduits for

executing actions on behalf of an actual authoritative entity.

So you're saying "service account" in a general size is a

workload identity, you call this a "non-human

principal". In Polykey we just call these "agents", we

don't distinguish between human agents or robot

agents, we consider both to just be agents.

To be precise, Polykey literature distinguishes

Command vs Control. So anything exercising Command

is an Agent, whereas things being Controlled are

considered not to have authority and instead may just

have temporary credentials.

Does it seem that things that have responsibility still

appear to be users. Whereas workload identities

appear to fall in the control spectrum as opposed to the

command spectrum.

🚀 Powered by ChatGPT Exporter 10 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Key Observations Based on Command vs Control

1. Agents (Command)

Have direct authority to issue commands.

Exercise responsibility and decision-making.

In IAM terms, this aligns more with human users, privileged roles, or

root accounts (which are typically avoided in modern cloud security).

2. Controlled Entities (Control)

Do not have intrinsic authority.

Execute tasks under delegated authority via temporary credentials.

Aligns with service accounts, IAM roles, managed identities,

ephemeral tokens, and other workload identities in cloud IAM.

Implication for Workload Identities

Service accounts and workload identities are typically seen as part of

the control spectrum, as they do not make autonomous decisions but

rather execute tasks on behalf of an authoritative agent.

However, they can hold persistent credentials (e.g., API keys,

certificates), which blurs the distinction—making them sometimes

appear as semi-authoritative entities.

The real "command" entity is the user or system that grants them

access, aligning with agents in Polykey.

Would you like to extend this into a formalized Polykey Delegated Authority

Model that clarifies how IAM constructs map to Command vs Control in

Polykey's terminology?

🚀 Powered by ChatGPT Exporter 11 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

This shift toward autonomous agents exercising Command aligns well with

the evolution of AI-driven infrastructure. As AI systems gain decision-making

capabilities, they move beyond merely executing predefined workloads and

start issuing commands themselves.

Implications for IAM & Delegated Authority

1. AI Agents as First-Class Command Entities

Traditional IAM assumes that only human users have inherent

authority, while workloads are just controlled entities.

However, autonomous AI systems increasingly make independent

decisions, requiring direct authority, not just controlled execution.

These AI-driven agents now fit into the Command spectrum rather than

the Control spectrum.

2. Revising the Delegation Model

Conventional IAM models were built assuming human users →

workload identities (Control).

With autonomous AI, the model needs to account for AI agents

directly holding authority rather than merely assuming roles via

delegation.

3. Security & Accountability Considerations

If AI agents hold authority, they must be identifiable, accountable,

and revocable like human agents.

Agents that have Command are starting to become

more apparent with AI infrastructure, where we now

consider autonomous agents to also have authority.

🚀 Powered by ChatGPT Exporter 12 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

This brings in new challenges such as AI liability, auditability, and

ethical constraints in delegation models.

Polykey’s Perspective: A New Class of Agents

In Polykey’s model, Agents already include both human and non-human

entities.

Now, autonomous AI agents explicitly belong in the Command spectrum

alongside human agents.

Workload identities (e.g., service accounts, IAM roles) still remain in

the Control spectrum, unless explicitly promoted to have decision-making

capabilities.

Next Steps

Would you like to formalize this into a structured Delegated Authority Model

in Polykey documentation, incorporating autonomous agents and evolving

IAM paradigms? This could define how AI-driven authority should be

managed, revoked, and audited within IAM frameworks.

Great question. The distinction between Service Accounts, IAM Roles, and

Managed Identities across cloud providers is nuanced, and AWS IAM Roles

sometimes appear to function differently. Let's break it down.

Why do you have GCP Service Accounts as Workload

Identity, but IAM role as delgated identity and Azure

Managed Identity as Workload Identity? Why is IAM

roles different? Does AWS not have the equivalent of a

Workload Identity?

🚀 Powered by ChatGPT Exporter 13 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

1. Defining Workload Identity vs. Delegated

Identity

Workload Identity → A persistent, non-human identity directly assigned

to a workload (VM, container, function, application, etc.).

Delegated Identity → A temporary identity that a principal assumes,

usually for short-lived access or cross-account delegation.

2. Why is Google Service Account a Workload

Identity?

Google Service Accounts are first-class identities assigned to workloads.

A Compute Engine VM, Cloud Function, or Kubernetes Pod can have a Service

Account attached to it, and it authenticates as that identity.

Google Service Accounts have long-lived credentials (unless Workload

Identity Federation is used).

Summary

✅ Persistent Identity → Directly associated with a workload.

✅ Not assumed by another principal → It exists as an entity.

✅ Holds credentials (OAuth2, JSON keys).

3. Why is AWS IAM Role a Delegated Identity?

IAM Roles are not persistent identities; they require assumption.

A Role does not have long-lived credentials. Instead, it must be assumed by

an entity, such as a user, another role, or a service.

🚀 Powered by ChatGPT Exporter 14 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

AWS workloads do not have persistent identities the same way Google

Cloud does. Instead, they assume IAM Roles via STS (Security Token

Service).

The role assumption mechanism is fundamentally delegation, making

IAM Roles delegated identities rather than workload identities.

Summary

❌ No persistent identity → Roles must be assumed to be used.

✅ Always delegated → Workloads/users must assume it.

✅ Short-lived credentials → Uses STS AssumeRole instead of long-lived

credentials.

4. Why is Azure Managed Identity a Workload

Identity?

Azure Managed Identities are first-class identities tied to a workload.

Just like Google Service Accounts, a VM, Function, or App can be directly

assigned a Managed Identity.

They do not require role assumption like AWS IAM Roles.

They work via federated authentication (MSAL, OAuth2), and tokens

are automatically managed.

Summary

✅ Persistent Identity → Directly associated with a workload.

✅ Not assumed by another principal → Exists independently.

✅ Short-lived tokens managed automatically.

🚀 Powered by ChatGPT Exporter 15 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

5. Does AWS Have a True Workload Identity?

AWS does not have a first-class workload identity like Google Service

Accounts or Azure Managed Identities. Instead, workloads must assume

IAM Roles, meaning:

1. No persistent workload identity.

2. Credentials are always temporary.

3. Roles must be explicitly assumed via STS.

However, AWS recently introduced:

IAM Roles for Service Accounts (IRSA) in Kubernetes → Maps

Kubernetes Service Accounts to IAM Roles.

Workload Identity Federation → Allows workloads to authenticate via

external identity providers.

These still rely on STS AssumeRole, meaning IAM Roles remain primarily

delegated identities rather than persistent workload identities.

6. Summary Table

Cloud Provider Workload Identity (Persistent) Delegated Identity (Assumed)

Google Cloud Service Account Service Account Impersonation

AWS ❌ (No persistent workload identity) IAM Role (Assumed via STS)

Azure Managed Identity Managed Identity Delegation

🚀 Powered by ChatGPT Exporter 16 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

7. Implication for Polykey's Delegated Authority

Model

Google Service Accounts and Azure Managed Identities align with

Workload Identity (Control spectrum) in Polykey.

AWS IAM Roles align more with Delegated Identities due to STS-based

assumption.

AI Agents (autonomous systems) would belong in Command, whereas

assumed roles remain in Control.

Would you like to refine the Delegated Authority Model with this clarification?

This could help in documenting how different IAM models fit into Polykey’s

Command vs Control paradigm.

You say IAM role is a delegated identity, in the context

of Polykey, that's more similar to using the sigchain

system to delegate authority through signed claims

rather than sharing secrets (long lived or short lived)

through vaults.

You say IAM role is a delegated identity, in the context

of Polykey, that's more similar to using the sigchain

system to delegate authority through signed claims

rather than sharing secrets (long lived or short lived)

through vaults.

You say IAM role is a delegated identity, in the context

of Polykey, that's more similar to using the sigchain

system to delegate authority through signed claims

🚀 Powered by ChatGPT Exporter 17 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Yes, in the context of Polykey, IAM Role assumption (via STS in AWS) closely

resembles delegating authority through signed claims in Polykey's sigchain

system.

Key Parallels Between IAM Role Assumption & Sigchain

Delegation

1. Delegation Without Sharing Secrets

IAM Roles (AWS): A role is assumed using temporary credentials

generated by STS, avoiding the need to share long-lived secrets.

Polykey Sigchain: Authority is delegated cryptographically via

signed claims, rather than exchanging raw credentials.

2. Ephemeral, Contextual Authorization

IAM Roles grant access only when assumed, ensuring limited privilege

escalation.

Sigchain delegation similarly enforces scoped, revocable authority

without persisting secret material.

3. Non-Persistent Identity for Workloads

IAM Roles are stateless: A workload must assume them dynamically.

Sigchain delegation is stateless: It grants authority without an

always-on identity, making it more flexible than traditional credential

sharing.

Contrast With Service Accounts & Managed Identities

rather than sharing secrets (long lived or short lived)

through vaults.

🚀 Powered by ChatGPT Exporter 18 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Service Accounts (GCP) and Managed Identities (Azure) function as

persistent workload identities—closer to long-lived identities than

delegated roles.

These are closer to storing secrets in a vault, as they often rely on pre-

provisioned credentials (e.g., JSON keys, OAuth tokens).

How This Fits Into Polykey’s Model

IAM Role assumption aligns with sigchain-based cryptographic

delegation.

Service Accounts & Managed Identities align with persisting workload

credentials (Control, not Command).

Delegation mechanisms (STS, Sigchains) provide a secure alternative to

storing and distributing secrets.

Would you like this formalized into Polykey’s Delegated Authority Model to

clarify how different IAM concepts map to Polykey’s system?

Exactly. IAM Roles are not true workload identities like Service Accounts or

Managed Identities—they are just a mechanism to generate temporary

credentials.

Ah in that case, IAM roles don't really fit into Managed

Identity (non-human principals). They are just an

conceptual encapsulation of a short-lived credential.

And since they aren't cryptographically tracked like

PK's sigchain, then they aren't even as powerful.

🚀 Powered by ChatGPT Exporter 19 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Key Insights:

1. IAM Roles are Ephemeral Identity Wrappers

They do not exist persistently and must be assumed dynamically.

They serve as an abstraction layer over temporary credentials

rather than being actual identities.

2. Weaker Than Cryptographic Delegation

Unlike Polykey's sigchain, AWS does not track cryptographic

delegation chains.

STS-issued credentials are opaque tokens, without verifiable

delegation chains.

This means IAM Roles cannot prove delegation history as effectively

as sigchain-signed claims.

3. Not Workload Identities, Just Credential Containers

Managed Identities (Azure) & Service Accounts (GCP) persist →

they function as first-class principals.

IAM Roles are transient → they are not true identities, just a

method to encapsulate short-lived access.

This distinction strengthens the case for Polykey’s sigchain model being more

robust for cryptographic delegation tracking than traditional cloud IAM

systems. Would you like me to refine the documentation model further to

emphasize this?

Does that mean AWS IAM doesn't really have the

equivalent of a non-human principal equivalent to

Service Accounts or Managed Identities? I would argue

from a programming theory perspective, these are just

incomplete implementation of "first-class identities".

🚀 Powered by ChatGPT Exporter 20 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Yes, AWS IAM does not have a true equivalent to Service Accounts or

Managed Identities as first-class, non-human principals.

Why AWS IAM Lacks a True Non-Human Principal

1. IAM Roles Are Not Persistent Identities

They are not directly assignable to workloads.

Instead, they require assumption to generate temporary credentials.

2. No Direct Identity for Workloads

Google Service Accounts and Azure Managed Identities can be

directly attached to workloads.

AWS workloads (EC2, Lambda, etc.) can assume IAM Roles, but they do

not own an intrinsic identity.

3. IAM Roles Are Just Credential Generators

IAM Roles are essentially an abstraction over STS-generated

temporary credentials.

They lack persistence, cryptographic tracking, and direct

authentication.

From a Programming Theory Perspective: Incomplete

First-Class Identities

Does that mean AWS IAM doesn't really have the

equivalent of a non-human principal equivalent to

Service Accounts or Managed Identities? I would argue

from a programming theory perspective, these are just

incomplete implementation of "first-class identities".

🚀 Powered by ChatGPT Exporter 21 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

In programming language theory, a first-class entity is something that:

Can be assigned to variables.

Persists independently in the system.

Can be used as a parameter, returned, and manipulated freely.

AWS IAM Roles fail to be first-class identities because:

They do not persist—they only exist when assumed.

They cannot authenticate directly—they always require temporary

tokens.

They lack delegation tracking—STS assumes implicit trust rather than

verifiable delegation.

Conclusion

AWS never fully implemented a first-class workload identity system,

instead relying on IAM Roles as a workaround. This makes AWS IAM less

expressive compared to Google IAM (Service Accounts) or Azure IAM

(Managed Identities).

Would you like me to formalize this insight into Polykey’s Delegated Authority

Model to highlight how AWS’s design differs fundamentally from a

cryptographically verifiable delegation system?

Google Cloud (GCP) and Microsoft Azure both introduced first-class workload

identities (Service Accounts and Managed Identities, respectively) because

I would like you to explain why do you think GCP and

Azure decided to go beyond AWS's IAM model to

introduce workload identities?

🚀 Powered by ChatGPT Exporter 22 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

AWS’s IAM model is incomplete when it comes to non-human principals. Their

decision to go beyond AWS’s IAM model was driven by several architectural,

security, and usability considerations.

1. The Fundamental Limitation of AWS IAM

AWS's IAM Roles are not true non-human principals—they are merely

wrappers around temporary credentials. This introduces three key issues:

1. No Persistent Identity for Workloads

Workloads (EC2, Lambda, EKS, etc.) must assume roles but do not have

their own persistent identity.

There is no direct way to reference workloads in IAM policies, requiring

role assumptions instead.

2. Over-Reliance on Temporary Credentials (STS Tokens)

AWS workloads must assume IAM roles via STS, leading to implicit

trust rather than cryptographically verifiable delegation.

AWS lacks direct identity authentication for workloads, making

workload authentication dependent on credential brokering.

3. IAM Roles Are Not First-Class Objects

In programming theory, first-class objects can be referenced, passed

around, and exist independently.

IAM Roles fail this because they are not persistent entities, only

existing when assumed.

🚀 Powered by ChatGPT Exporter 23 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

2. Why Did GCP and Azure Introduce Workload

Identities?

(A) Security & Auditing Concerns

GCP & Azure recognized that IAM Roles in AWS create an unnecessary

security gap.

With AWS IAM Roles, tracking delegation is difficult since STS tokens are

opaque and untraceable.

Instead, Google Service Accounts & Azure Managed Identities are

persistent, allowing for better auditing and visibility.

✅ GCP & Azure Solution:

GCP Service Accounts & Azure Managed Identities are independently

trackable as first-class objects in IAM.

They support auditing, logging, and cryptographic identity

verification.

(B) Direct Authentication Without STS Middle Layer

AWS requires STS AssumeRole for workloads to authenticate.

In contrast, Google Service Accounts & Azure Managed Identities

support direct authentication via OAuth2, OIDC, and certificates.

✅ GCP & Azure Solution:

Google’s Workload Identity Federation allows workloads to authenticate

directly using OIDC or federated credentials, avoiding long-lived secrets.

Azure Managed Identities automatically issue OAuth2 tokens, eliminating

credential sharing.

(C) Usability & Developer Experience

AWS’s role assumption model is unnecessarily complex for developers.

🚀 Powered by ChatGPT Exporter 24 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Managing IAM Roles + STS tokens across multiple workloads is harder than

just assigning a persistent workload identity.

✅ GCP & Azure Solution:

Google & Azure allow workloads to have persistent, directly assignable

identities, simplifying access control.

3. AWS’s Response: Workload Identity

Federation

AWS has acknowledged this gap and is slowly moving towards a true

workload identity model, introducing:

IAM Roles for Service Accounts (IRSA) in Kubernetes.

Workload Identity Federation (OIDC-based authentication).

However, these are still built on top of STS rather than being native first-

class identities, so AWS lags behind GCP & Azure in workload identity

implementation.

4. Conclusion: Why GCP & Azure Went Beyond

AWS IAM

AWS's IAM model is fundamentally incomplete because it lacks

persistent workload identities.

GCP and Azure introduced Service Accounts & Managed Identities to

provide:

✅ First-class identities for workloads

🚀 Powered by ChatGPT Exporter 25 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

✅ Direct authentication support

✅ Stronger security & auditing

✅ Better developer experience

AWS has started addressing this with Workload Identity Federation, but

its IAM model still relies on STS, making it less robust.

Would you like to incorporate this into Polykey’s documentation as a

rationale for adopting a cryptographically verifiable delegated authority

model rather than relying on ephemeral credentials?

That makes complete sense within Polykey’s framework. The concept of

workload identity in cloud IAM exists because cloud providers lacked a

proper framework for distinguishing authority from execution. Instead of

thinking about identities in terms of whether they belong to a human or a

workload, Polykey’s Command & Control model already provides a more

general and principled approach.

Why "Workload Identity" Is an Unnecessary Distinction in

Polykey

1. First-Class Identities Should Be Unified

In the context of Polykey, does the concept workload

identity really matter? Why not just have first class

identities in general, and understand delegated

authority through the framework of Command &

Control. I feel like the "workload identity" system

comes from a place of wanting to specifically identify

controlled entities without realising a more general

framework exists.

🚀 Powered by ChatGPT Exporter 26 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

In Polykey, all Agents are first-class identities, whether they are

human, AI-driven, or machine-controlled.

There is no need to distinguish workload identities—what matters is

who holds authority (Command) and who executes (Control).

2. Cloud IAM Introduced Workload Identity to Solve a Specific Problem

AWS IAM Roles were not true identities, so cloud providers needed a

separate workload identity model.

In Polykey, every entity is already an identity, eliminating the need

for a special category.

3. Command & Control Framework is More General

Command entities (Agents) exercise authority and make decisions.

Controlled entities lack authority and act under delegated credentials.

Whether something is a human, workload, or AI agent is irrelevant—

what matters is whether they exercise Command or operate under

Control.

Key Takeaway

Instead of distinguishing "workload identities", Polykey should treat all

identities as first-class entities and use Command & Control to define

authority relationships. This removes artificial complexity introduced by cloud

IAM's patchwork approach to workload identity.

Would you like me to incorporate this into Polykey’s Delegated Authority

Model documentation and refine the terminology accordingly?

Can you write an argument for why Polykey's delegated

authority model is superior to GCP, AWS and Azure by

generalizing to a general model of authority

management.

🚀 Powered by ChatGPT Exporter 27 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Polykey's Delegated Authority Model offers a more comprehensive and flexible

approach to authority management compared to traditional IAM systems like

those of GCP, AWS, and Azure. By generalizing authority management through its

Command & Control framework, Polykey addresses several limitations inherent in

conventional cloud IAM models.

Advantages of Polykey's Delegated Authority Model:

1. Unified Identity Framework:

Polykey treats all entities—human users, machines, and autonomous

agents—as first-class identities. This eliminates the need for distinctions

like "workload identities," simplifying the management of diverse

principals.

2. Granular Delegation with Cryptographic Assurance:

Authority is delegated through cryptographic means, ensuring that all

actions are verifiable and traceable. This cryptographic delegation

provides a robust audit trail, enhancing security and accountability.

3. Decentralized Control:

Polykey operates on a decentralized model, reducing reliance on

centralized IAM infrastructures. This decentralization enhances resilience

and reduces single points of failure.

4. Dynamic Authority Management:

The system allows for dynamic adjustment of authority levels, enabling

real-time responses to changing operational requirements without the

I want you to examine counter arguments and put it

together.

🚀 Powered by ChatGPT Exporter 28 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

constraints of static role assignments.

Counterarguments and Considerations:

Complexity of Implementation:

Argument: Implementing a cryptographic delegation system may

introduce complexity compared to traditional IAM setups.

Rebuttal: While initial implementation may require careful planning, the

long-term benefits of enhanced security, flexibility, and scalability

outweigh the initial complexity.

Integration with Existing Systems:

Argument: Organizations heavily invested in existing IAM frameworks

might find integration challenging.

Rebuttal: Polykey is designed to complement existing systems, offering

integration capabilities that allow organizations to adopt its model

progressively without disrupting current operations.

Performance Overhead:

Argument: The use of cryptographic operations for delegation might

introduce performance overhead.

Rebuttal: Advancements in cryptographic techniques and Polykey's

efficient implementation minimize performance impacts, ensuring that

security enhancements do not come at the cost of operational efficiency.

Conclusion:

By adopting a generalized model of authority management, Polykey's Delegated

Authority Model transcends the limitations of traditional IAM systems. Its unified

identity framework, cryptographic delegation, decentralized control, and dynamic

authority management provide a robust and flexible foundation for modern

organizational needs. While considerations such as implementation complexity

and integration exist, the model's inherent advantages position it as a superior

approach to authority management in contemporary environments.

🚀 Powered by ChatGPT Exporter 29 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Authority Management Models in Major Cloud Platforms

and Why They Are Degenerate Compared to Polykey

Each major cloud provider—AWS, GCP, and Azure—has settled on a distinct

identity and access management (IAM) model to govern authority

delegation. However, these models are incomplete or degenerate in various

ways, primarily due to historical constraints, incremental evolution, and

architectural compromises.

Polykey's Delegated Authority Model, by contrast, provides a generalized,

cryptographically secure, and first-principles-based approach to authority

delegation that avoids the limitations of traditional IAM systems.

1. Cloud IAM Models and Their Degenerate

Aspects

Each cloud provider has evolved a different IAM model based on its own historical

decisions. However, these models share common limitations that Polykey

addresses.

Sources

Elaborate on the models that each major cloud

platform has settled on, and identify why these are

degenerate models... and how Polykey's model is

better.

🚀 Powered by ChatGPT Exporter 30 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

(A) AWS IAM: Delegated Credentials Without First-Class

Identities

AWS follows a role-based delegation model, where IAM roles are the primary

mechanism for workload identity and privilege escalation.

AWS IAM Model

IAM Users & Groups → Human identities authenticated via AWS IAM.

IAM Roles (Delegated Identities) → Workloads or users assume temporary

credentials via STS (Security Token Service).

Policies (RBAC & ABAC) → Permissions assigned via IAM Policies.

Federation → External identities use SSO and assume roles.

Trust Relationships → Policies define which entities can assume roles.

Why AWS’s IAM Model is Degenerate

1. No First-Class Workload Identities

AWS does not have persistent non-human principals (e.g., service

accounts or managed identities).

Instead, workloads must assume IAM roles dynamically via STS,

making them ephemeral wrappers around short-lived credentials.

This breaks direct identity accountability—since every identity is

transient, it's difficult to track delegation history.

2. Overreliance on Implicit Trust (STS Tokens)

AWS trusts STS tokens without cryptographic delegation tracking.

STS-issued tokens cannot verify delegation history—they function like

opaque session credentials.

This makes delegation less auditable and more prone to misuse.

3. Policy-Based Access Control (PBAC) is Rigid

🚀 Powered by ChatGPT Exporter 31 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

AWS IAM policies are static and require manual updates.

Fine-grained delegation is hard to express in policies, leading to over-

permissioning.

(B) Google Cloud IAM: Service Accounts as Pseudo-First-

Class Workload Identities

Google IAM follows a Service Account-centric model, where workloads get

persistent non-human principals.

Google IAM Model

Users & Groups → Managed via Google Workspace.

Service Accounts (Persistent Non-Human Principals) → Assigned to

workloads for API access.

IAM Policies (RBAC & PBAC) → Defines permissions at various resource

levels.

Workload Identity Federation → External identities authenticate via OIDC.

Impersonation → Users and workloads assume service accounts

dynamically.

Why Google’s IAM Model is Degenerate

1. Service Accounts Are Still Static Identities

Google hardcodes workload identities via Service Accounts.

They act as long-lived principals, requiring key-based

authentication unless Workload Identity Federation is used.

This increases the risk of credential leakage.

2. Lacks Fine-Grained Cryptographic Delegation

🚀 Powered by ChatGPT Exporter 32 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Google allows service account impersonation, but it lacks a

structured cryptographic delegation chain.

Trust is not cryptographically provable, just policy-enforced.

Delegation tracking is weaker than a sigchain-based model.

3. Policy Inheritance is Cumbersome

Google’s IAM model forces resource hierarchy-based policy

application, making fine-grained delegation cumbersome.

Permissions are not scoped dynamically—they require manual

assignment.

(C) Azure IAM: Managed Identities with Hidden Delegation

Mechanisms

Azure's IAM model relies heavily on Managed Identities and Active Directory

(AAD).

Azure IAM Model

Users & Groups → Managed via Azure Active Directory (AAD).

Managed Identities (First-Class Workload Identities) → Workloads

authenticate directly via MSAL & OAuth2.

Role-Based Access Control (RBAC) → Defines access policies.

Federation via Azure AD → External identities can authenticate via SAML,

OAuth, OIDC.

Why Azure’s IAM Model is Degenerate

1. Opaque, AD-Dependent Delegation Mechanism

Delegation is managed internally via Active Directory, making

delegation less transparent.

🚀 Powered by ChatGPT Exporter 33 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

No cryptographic verification—delegation tracking is controlled by

Microsoft, not cryptographically auditable.

This creates an implicit trust system rather than an explicit delegation

model.

2. Lacks True Decentralization

Azure IAM is deeply tied to Active Directory, making it highly

centralized.

There is no independent delegation tracking outside of AD.

Polykey’s model is decentralized and does not require an external trust

system.

2. Why Polykey's Delegated Authority Model is

Superior

Polykey's Delegated Authority Model is designed to avoid the degeneracies

of cloud IAM by implementing a generalized, cryptographically verifiable

system for identity and delegation.

(A) First-Class Identities for Everything

Every entity—human, machine, or AI—is a first-class principal.

No need for distinctions like workload identities or roles vs. service

accounts.

Identities are persistent, cryptographic, and self-verifiable.

(B) Cryptographic Delegation with Verifiable History

Delegation occurs via sigchain-based cryptographic claims, not opaque

session credentials.

🚀 Powered by ChatGPT Exporter 34 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Every authority transfer is provably linked, revocable, and auditable.

(C) Dynamic & Contextual Delegation

Delegation decisions can be context-aware and time-bound.

Unlike AWS IAM policy bloat, Polykey supports granular, ephemeral

delegation.

Unlike Google’s rigid resource hierarchy, delegation paths in Polykey are

flexible and dynamically resolvable.

(D) Decentralized & Trust-Minimized

No reliance on centralized directories (like Azure AD) or implicit trust

(like AWS STS).

Delegation is provable independently, avoiding the need for policy

enforcement black boxes.

3. Summary: Cloud IAM vs. Polykey

Feature AWS IAM Google IAM Azure IAM Polykey

Identity Model IAM Users &

Roles

Service Accounts Managed

Identities

First-Class

Identities

Delegation

Mechanism

STS Temporary

Tokens

Service Account

Impersonation

Active

Directory

Sigchain-based

Cryptographic

Claims

Delegation

Tracking

Implicit Trust, No

Cryptographic

Proof

Policy-Based Centralized

in AD

Fully Verifiable

Sigchain

Policy Flexibility Rigid, Hard to

Scope

Resource-

Hierarchy Based

AD-

Dependent

Dynamic &

Context-Aware

🚀 Powered by ChatGPT Exporter 35 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Feature AWS IAM Google IAM Azure IAM Polykey

Decentralization Fully Centralized Google-

Controlled

AD-

Controlled

Fully

Decentralized

4. Conclusion: Why Polykey’s Model is the

Future

Cloud IAM models are patchwork solutions to problems they created by not

implementing first-class delegation from the beginning. AWS, Google, and

Azure built systems that require manual fixes and workarounds to

support delegation, resulting in degeneracies.

Polykey, however: ✅ Eliminates arbitrary distinctions (workload vs. human

identity).

✅ Uses cryptographic delegation instead of implicit trust.

✅ Allows decentralized, trust-minimized delegation tracking.

✅ Supports dynamic, context-aware delegation paths.

Would you like this formalized into a Polykey whitepaper or integrated into

documentation?

And also what's with all the buzzwords and naming

things without standardisation, is this poisoning the

well, making things overly complex for no reason?

Generate a diagram demonstrating this is just

something stupid the cloud platforms are doing NIH

(not invented here).

🚀 Powered by ChatGPT Exporter 36 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

I've generated a satirical diagram illustrating how cloud providers overcomplicate

IAM by using different buzzwords and proprietary terms for essentially the same

concepts. The image humorously depicts AWS, Google Cloud, and Azure as

separate islands, each tangled in their own IAM terminology, while a frustrated

user on a "Polykey" boat observes the mess.

This highlights the unnecessary complexity driven by Not Invented Here (NIH)

Syndrome, making things harder for no reason. Let me know if you’d like

refinements or additional explanations!

The Cloud IAM Circus: A Comedy of Unnecessary

Complexity

Now explain it in words... make it humorous poking fun

at these cloud platforms folly.

🚀 Powered by ChatGPT Exporter 37 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Once upon a time, in a world where computers just needed to know who’s in

charge, the cloud giants—AWS, Google Cloud, and Azure—decided that

simplicity was for amateurs. Instead of agreeing on a straightforward way to

manage identities and delegate authority, they each invented their own

terminology, slapped on a bunch of buzzwords, and called it "innovation."

Thus, began the great Cloud IAM Tower of Babel, where nobody speaks the

same language, and yet every system does the same thing in slightly

different, needlessly complicated ways.

Act 1: AWS – The Overlord of Temporary

Credentials

AWS, the grand old titan of the cloud, took one look at identity management and

thought:

““Why create a first-class workload identity when we can just wrap everything

in temporary credentials and call it a day?””

And so, IAM Roles were born. But, of course, an IAM Role isn’t actually an

identity—it's a conceptual wrapper around short-lived credentials, handed

out by the divine powers of STS (Security Token Service).

Want to authenticate a workload? You don’t actually have an identity,

but here’s a temporary ticket!

Want to track who assumed what role? Oh, don’t worry, we log something

somewhere... probably.

Want to verify delegation? Just trust the role assumption magic, it'll be

fine.

AWS IAM is basically a LARP (Live-Action Role Playing) game where

everyone assumes an identity but never actually has one. It’s delegation

🚀 Powered by ChatGPT Exporter 38 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

by pretending to be someone else instead of actually being someone.

Act 2: Google Cloud – A Service Account by Any

Other Name

Google, ever the academic, looked at AWS and said:

““Oh no, no, no—roles are far too ephemeral! We need something that

persists!””

Enter the Google Service Account, a first-class workload identity that

doesn’t need to be assumed like AWS IAM Roles. It has an email-like

identifier, can hold long-lived keys, and is directly assigned to workloads.

Sounds good, right? Well, here’s the catch:

It still needs manual key management unless you use Workload Identity

Federation, which is basically STS with a different hat.

It can be impersonated by other identities, which means… wait for it…

delegation is still policy-based, not cryptographically enforced.

Google’s IAM policies are hierarchical, meaning your permissions are

dependent on where you sit in the project hierarchy, like some kind of

medieval feudal system.

So, instead of "LARPing" like AWS, Google went full bureaucracy mode,

inventing a digital DMV where identities have to apply for permission to

do anything.

Act 3: Azure – Microsoft Active Directory but

Make It Cloud

🚀 Powered by ChatGPT Exporter 39 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Microsoft, ever loyal to Active Directory, took one look at Google and AWS and

thought:

““Why make a new system when we can just rebrand AD and keep the

enterprise IT admins happy?””

Thus, Managed Identities were born. They’re directly assigned to

workloads, eliminating AWS’s role assumption nonsense and Google’s service

account key headaches. But:

All delegation is hidden inside Active Directory.

Microsoft controls the delegation logic, and you don’t get

cryptographic proof—you just believe that Azure AD did the right thing.

You want fine-grained control? Too bad, we’re doing RBAC the Microsoft

way!

So, Azure’s IAM is just AD with a cloud facelift—great for enterprises

that love AD, but a black box for anyone wanting actual transparency.

Act 4: Polykey – “Just Use First-Class Identities,

You Buffoons”

Meanwhile, Polykey is standing on the sidelines watching this mess unfold,

thinking:

““Why don’t we just use first-class cryptographic identities for

everything and manage delegation explicitly instead of with weird hacks?””

Why Polykey’s Delegated Authority Model Doesn’t Suck

1. Everyone is an Agent

🚀 Powered by ChatGPT Exporter 40 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

No need to invent special names like Service Account, IAM Role, or

Managed Identity.

You are an Agent. Your AI is an Agent. Your workload is an Agent.

Done.

2. Cryptographic Delegation, Not Policy-Based Guesswork

Delegation isn’t some abstract policy stuck in a JSON document

somewhere.

It’s signed into a cryptographic chain (sigchain) so you can prove

delegation actually happened.

3. Command vs. Control is the Only Distinction That Matters

If you hold authority, you exercise Command.

If you don’t, you act under Control.

No need to distinguish "human" vs. "workload" vs. "service

account"—it’s all just delegation and authority tracking.

4. No Centralized IAM Gods

Unlike AWS, GCP, and Azure, which require trusting the cloud provider

to manage delegation, Polykey is decentralized.

No external trust assumptions. No black-box AD magic. Just pure

cryptographic authority delegation.

The Moral of the Story

AWS’s IAM is just ephemeral credentials masquerading as delegation.

Google’s IAM is a bureaucratic nightmare of policies and hierarchy.

Azure’s IAM is a mysterious black box tied to AD.

🚀 Powered by ChatGPT Exporter 41 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Meanwhile, Polykey is sitting here saying:

““Why don’t we just have cryptographic first-class identities and explicit

delegation? How is this so hard?””

It’s not that cloud providers are dumb, it’s that they started from broken

assumptions and are too deep in their own NIH (Not Invented Here)

syndrome to fix it properly. Instead, they keep patching over the cracks and

coming up with new names for the same things, making everything sound

fancier but not actually better.

Polykey avoids all this nonsense by focusing on clear delegation principles,

cryptographic authority, and removing artificial distinctions.

Would you like me to formalize this into a position paper or documentation

chapter on why Polykey’s authority model is fundamentally superior?

Yea do it.

🚀 Powered by ChatGPT Exporter 42 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

Answer in chat instead

I've drafted a formal document outlining why Polykey’s Delegated Authority

Model is superior to the IAM models of AWS, GCP, and Azure by providing a

cryptographically verifiable, decentralized, and first-principles-based

alternative. The document also humorously highlights the fragmentation and

NIH (Not Invented Here) syndrome that plagues cloud IAM.

Let me know if you'd like refinements, additional comparisons, or more

technical deep dives!

Polykey Vs Cloud Iam

Title: Why Polykey’s Delegated Authority Model is Superior to Cloud

IAM Systems

Introduction

The modern cloud computing landscape is dominated by identity and access

management (IAM) models that are unnecessarily complex, inconsistent

across platforms, and fundamentally degenerate in their approach to

authority delegation. AWS, Google Cloud, and Azure have each created their

🚀 Powered by ChatGPT Exporter 43 / 43

https://www.chatgptexporter.com/
https://www.chatgptexporter.com/
https://www.chatgptexporter.com/

