-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathrelaxedIK_objective.py
407 lines (323 loc) · 11.5 KB
/
relaxedIK_objective.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from ..Utils.colors import *
from ..GROOVE.GROOVE_Utils.objective import Objective, get_groove_global_vars, objective_master
from ..Utils import tf_fast as Tf
from ..Utils.geometry_utils import *
from ..Utils.joint_utils import *
# try:
# from boost import objectives_ext
# except:
# print 'ERROR when importing boost library extension. Defaulting to python implementation (which will be slower). ' \
# 'To get speed boost, please install and configure the boost python library: ' \
# 'https://www.boost.org/doc/libs/1_67_0/more/getting_started/unix-variants.html'
def objective_master_relaxedIK(x):
vars = get_groove_global_vars()
vars.frames = vars.robot.getFrames(x)
return objective_master(x)
########################################################################################################################
class Position_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return False
def name(self): return 'Position'
def __call__(self, x, vars):
# positions = vars.arm.getFrames(x)[0]
positions = vars.frames[0]
eePos = positions[-1]
goal_pos = vars.goal_pos
diff = (eePos - goal_pos)
norm_ord = 2
x_val = np.linalg.norm(diff, ord=norm_ord)
t = 0.0
d = 2.0
c = .1
f = 10
g = 2
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Position_MultiEE_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return False
def name(self): return 'Position_MultiEE'
def __call__(self, x, vars):
if vars.c_boost:
x_val = objectives_ext.position_multiEE_obj(vars.frames, vars.goal_positions, [1.0, 1.0])
else:
x_val_sum = 0.0
for i, f in enumerate(vars.frames):
positions = f[0]
eePos = positions[-1]
goal_pos = vars.goal_positions[i]
diff = (eePos - goal_pos)
norm_ord = 2
x_val = np.linalg.norm(diff, ord=norm_ord)
x_val_sum += x_val
x_val = x_val_sum
t = 0.0
d = 2.0
c = .1
f = 10
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Orientation_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return False
def name(self): return 'Orientation'
def __call__(self, x, vars):
frames = vars.frames[1]
eeMat = frames[-1]
goal_quat = vars.goal_quat
new_mat = np.zeros((4, 4))
new_mat[0:3, 0:3] = eeMat
new_mat[3, 3] = 1
ee_quat = Tf.quaternion_from_matrix(new_mat)
q = ee_quat
ee_quat2 = [-q[0],-q[1],-q[2],-q[3]]
norm_ord = 2
# start = time.time()
disp = np.linalg.norm(Tf.quaternion_disp(goal_quat,ee_quat), ord=norm_ord)
disp2 = np.linalg.norm(Tf.quaternion_disp(goal_quat,ee_quat2),ord=norm_ord)
# after = time.time()
# print after - start
x_val = min(disp, disp2)
# x_val = np.min(np.array([disp,disp2]))
t = 0.0
d = 2.0
c = .1
f = 10
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Orientation_MultiEE_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return False
def name(self): return 'Orientation_MultiEE'
def __call__(self, x, vars):
if vars.c_boost:
x_val = objectives_ext.orientation_multiEE_obj(vars.frames, vars.goal_quats, [1.0, 1.0])
else:
x_val_sum = 0.0
for i, f in enumerate(vars.frames):
eeMat = f[1][-1]
goal_quat = vars.goal_quats[i]
new_mat = np.zeros((4, 4))
new_mat[0:3, 0:3] = eeMat
new_mat[3, 3] = 1
ee_quat = Tf.quaternion_from_matrix(new_mat)
q = ee_quat
ee_quat2 = [-q[0], -q[1], -q[2], -q[3]]
norm_ord = 2
disp = np.linalg.norm(Tf.quaternion_disp(goal_quat, ee_quat), ord=norm_ord)
disp2 = np.linalg.norm(Tf.quaternion_disp(goal_quat, ee_quat2), ord=norm_ord)
x_val = min(disp, disp2)
x_val_sum += x_val
x_val = x_val_sum
t = 0.0
d = 2.0
c = .1
f = 10
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Min_Jt_Vel_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return True
def name(self): return 'Min_Jt_Vel'
def __call__(self, x, vars):
if vars.c_boost:
x_val = objectives_ext.min_jt_vel_obj(x, vars.xopt)
else:
v = x - np.array(vars.xopt)
x_val = np.linalg.norm(v)
t = 0.0
d = 2.0
c = .1
f = 10.0
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Min_EE_Vel_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return True
def name(self): return 'Min_EE_Vel'
def __call__(self, x, vars):
jtPt = vars.frames[0][-1]
x_val = np.linalg.norm(vars.ee_pos - jtPt)
t = 0.0
d = 2.0
c = .1
f = 10.0
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Min_Jt_Accel_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return True
def name(self): return 'Min_Jt_Accel'
def __call__(self, x, vars):
if vars.c_boost:
x_val = objectives_ext.min_jt_accel_obj(x, vars.xopt, vars.prev_state)
else:
prev_state_2 = np.array(vars.prev_state)
prev_state = np.array(vars.xopt)
v2 = prev_state - prev_state_2
v1 = x - prev_state
a = v2 - v1
x_val = np.linalg.norm(a)
t = 0.0
d = 2.0
c = .1
f = 10.0
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Min_EE_Accel_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return True
def name(self): return 'Min_EE_Accel'
def __call__(self, x, vars):
jtPt = vars.frames[0][-1]
prev_jtPt_2 = np.array(vars.prev_ee_pos)
prev_jtPt = np.array(vars.ee_pos)
v2 = prev_jtPt - prev_jtPt_2
v1 = jtPt - prev_jtPt
a = v2 - v1
x_val = np.linalg.norm(a)
t = 0.0
d = 2.0
c = .2
f = 0.0
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Min_Jt_Jerk_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return True
def name(self): return 'Min_Jt_Jerk'
def __call__(self, x, vars):
if vars.c_boost:
x_val = objectives_ext.min_jt_jerk_obj(x, vars.xopt, vars.prev_state, vars.prev_state2)
else:
prev_state_3 = np.array(vars.prev_state2)
prev_state_2 = np.array(vars.prev_state)
prev_state = np.array(vars.xopt)
v3 = prev_state_2 - prev_state_3
v2 = prev_state - prev_state_2
v1 = x - prev_state
a2 = v2 - v3
a1 = v1 - v2
j = a1 - a2
x_val = np.linalg.norm(j)
t = 0.0
d = 2.0
c = .2
f = 0.0
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Min_EE_Jerk_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return True
def name(self): return 'Min_EE_Jerk'
def __call__(self, x, vars):
jtPt = vars.frames[0][-1]
prev_jtPt_3 = np.array(vars.prev_ee_pos2)
prev_jtPt_2 = np.array(vars.prev_ee_pos)
prev_jtPt = np.array(vars.ee_pos)
v3 = prev_jtPt_2 - prev_jtPt_3
v2 = prev_jtPt - prev_jtPt_2
v1 = jtPt - prev_jtPt
a2 = v2 - v3
a1 = v1 - v2
j = a1 - a2
x_val = np.linalg.norm(j)
t = 0.0
d = 2.0
c = .2
f = 1.0
g = 2
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2))) + f * (x_val - t) ** g
class Joint_Limit_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return False
def name(self): return 'Joint_Limit'
def __call__(self, x, vars):
sum = 0.0
penalty = 50.0
d = 8
joint_limits = vars.robot.bounds
for i in xrange(vars.robot.numDOF):
l = joint_limits[i][0]
u = joint_limits[i][1]
mid = (u + l) / 2.0
a = penalty / (u - mid)**d
sum += a*(x[i] - mid)**d
vars.joint_limit_obj_value = sum
x_val = sum
t = 0
d = 2
c = 2.3
f = .003
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Self_Collision_Avoidance_Obj(Objective):
def __init__(self, *args): pass
def isVelObj(self): return False
def name(self): return 'Self_Collision_Avoidance'
def __call__(self, x, vars):
frames = vars.frames
jt_pts = frames[0]
x_val = vars.collision_graph.get_collision_score(frames)
t = 0.0
d = 2.0
c = .08
f = 1.0
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
class Collision_Avoidance_nn(Objective):
def __init__(self, *args): pass
def isVelObj(self): return False
def name(self): return 'Collision_Avoidance_nn'
def __call__(self, x, vars):
frames = vars.frames
out_vec = []
for f in frames:
jt_pts = f[0]
for j in jt_pts:
out_vec.append(j[0])
out_vec.append(j[1])
out_vec.append(j[2])
val = vars.collision_nn.predict([out_vec])[0]
# nn_stats = vars.nn_stats
# x_val = (val - nn_stats[0])/ nn_stats[1]
x_val = val
t = 0
d = 2
c = 1.85
f = .004
g = 2
if vars.c_boost:
return objectives_ext.nloss(x_val, t, d, c, f, g)
else:
return (-math.e ** ((-(x_val - t) ** d) / (2.0 * c ** 2)) ) + f * (x_val - t) ** g
# return math.exp(x_val - 0.64) - 1