-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluate_prob_pred.py
48 lines (42 loc) · 1.9 KB
/
evaluate_prob_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (C) 2019 Titus Cieslewski, RPG, University of Zurich, Switzerland
# You can contact the author at <titus at ifi dot uzh dot ch>
# Copyright (C) 2019 Konstantinos G. Derpanis,
# Dept. of Computer Science, Ryerson University, Toronto, Canada
# Copyright (C) 2019 Davide Scaramuzza, RPG, University of Zurich, Switzerland
#
# This file is part of sips2_open.
#
# sips2_open is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# sips2_open is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sips2_open. If not, see <http:#www.gnu.org/licenses/>.
import numpy as np
import sips2.flags as flags
import sips2.hyperparams as hyperparams
import sips2.system as system
FLAGS = flags.FLAGS
if __name__ == '__main__':
hyperparams.announceEval()
eval_pairs = hyperparams.getEvalDataGen()
graph, sess = hyperparams.modelFromCheckpoint()
forward_passer = hyperparams.getForwardPasser(graph, sess)
score_wasinlier = []
for pair in eval_pairs:
fps = [forward_passer(im) for im in pair.im]
matched_indices = system.match(fps)
inlier_mask = system.getInliers(pair, fps, matched_indices)
for im_i in [0, 1]:
im = pair.im[im_i]
inlier_indices = matched_indices[im_i][inlier_mask]
scores = fps[im_i].ip_scores
for pt_i in range(len(scores)):
score_wasinlier.append([scores[pt_i], pt_i in inlier_indices])
np.savetxt(hyperparams.wasInlierFilePath(), np.array(score_wasinlier))