-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinfer_folder.py
79 lines (67 loc) · 3.03 KB
/
infer_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (C) 2019 Titus Cieslewski, RPG, University of Zurich, Switzerland
# You can contact the author at <titus at ifi dot uzh dot ch>
# Copyright (C) 2019 Konstantinos G. Derpanis,
# Dept. of Computer Science, Ryerson University, Toronto, Canada
# Copyright (C) 2019 Davide Scaramuzza, RPG, University of Zurich, Switzerland
#
# This file is part of sips2_open.
#
# sips2_open is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# sips2_open is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sips2_open. If not, see <http:#www.gnu.org/licenses/>.
import absl.flags
import cv2
import numpy as np
import os
absl.flags.DEFINE_string('in_dir', '', 'Input directory')
absl.flags.DEFINE_string('out_dir', '', 'Output directory ($HOME/sips2_out/in_dir if empty)')
absl.flags.DEFINE_string('ext', '', 'Image extension, if not .jpg or .png (with dot)')
import sips2.flags as flags
import sips2.hyperparams as hyperparams
FLAGS = flags.FLAGS
class FolderInference(object):
def __init__(self):
assert FLAGS.in_dir != ''
assert os.path.exists(FLAGS.in_dir)
self._in = os.path.abspath(FLAGS.in_dir)
if FLAGS.out_dir == '':
self._out = os.path.join(os.environ['HOME'], 'sips2_out',
self._in[1:])
else:
self._out = os.path.abspath(FLAGS.out_dir)
if not os.path.exists(self._out):
os.makedirs(self._out)
print('Reading from %s' % self._in)
print('Writing to %s' % self._out)
exts = ['.jpg', '.png']
if FLAGS.ext != '':
exts.append(FLAGS.ext)
images = sorted(os.listdir(self._in))
self._images = [i for i in images if os.path.splitext(i)[1] in exts]
def __getitem__(self, item):
return os.path.join(self._in, self._images[item]), \
os.path.join(self._out, os.path.splitext(self._images[item])[0])
def __len__(self):
return len(self._images)
if __name__ == '__main__':
FLAGS.val_best = True
print(hyperparams.methodEvalString())
graph, sess = hyperparams.modelFromCheckpoint()
forward_passer = hyperparams.getForwardPasser(graph, sess)
folder_inference = FolderInference()
for i, in_path_out_root in enumerate(folder_inference):
print('%d/%d' % (i, len(folder_inference)))
in_path, out_root = in_path_out_root
fp = forward_passer(cv2.imread(in_path, cv2.IMREAD_GRAYSCALE))
np.savetxt(out_root + '.txt', np.vstack((fp.ips_rc, fp.ip_scores)).T,
header='row column score', fmt='%5.0f %5.0f %.3f')
cv2.imwrite(out_root + '_render.png', fp.render())