-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmotivate_loss.py
64 lines (50 loc) · 1.8 KB
/
motivate_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (C) 2019 Titus Cieslewski, RPG, University of Zurich, Switzerland
# You can contact the author at <titus at ifi dot uzh dot ch>
# Copyright (C) 2019 Konstantinos G. Derpanis,
# Dept. of Computer Science, Ryerson University, Toronto, Canada
# Copyright (C) 2019 Davide Scaramuzza, RPG, University of Zurich, Switzerland
#
# This file is part of sips2_open.
#
# sips2_open is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# sips2_open is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sips2_open. If not, see <http:#www.gnu.org/licenses/>.
import matplotlib.pyplot as plt
import numpy as np
def inlLoss(x):
return -np.log(x)
def outlLoss(x):
return -np.log(1-x)
def dInlLoss(x):
return 1/x
def dOutlLoss(x):
return -1/(1-x)
if __name__ == '__main__':
plt.figure(figsize=[6.4, 2.4])
eps = 1e-3
x = np.linspace(eps, 1-eps, 100)
inly = inlLoss(x)
outly = outlLoss(x)
plt.plot(x, inly, 'g')
plt.plot(x, outly, 'r')
x_sample = 0.7
plt.axvline(x=x_sample, color='black')
plt.arrow(x_sample, inlLoss(x_sample),
dInlLoss(x_sample)/10, 0, color='g', width=0.01)
plt.arrow(x_sample, outlLoss(x_sample),
dOutlLoss(x_sample) / 10, 0, color='r', width=0.01)
plt.ylim([0, 2])
plt.grid()
plt.ylabel('loss')
plt.xlabel('predicted probability')
plt.tight_layout()
plt.show()