-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathHahnCountable.v
635 lines (571 loc) · 24.5 KB
/
HahnCountable.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
(******************************************************************************)
(** * Countable sets *)
(******************************************************************************)
Require Import Arith micromega.Lia Setoid IndefiniteDescription ClassicalChoice.
Require Import HahnBase HahnList HahnEquational HahnRewrite.
Require Import HahnRelationsBasic HahnSets HahnNatExtra.
Require Import HahnListBefore HahnWf HahnSorted HahnTotalExt.
Set Implicit Arguments.
Fixpoint findP A (cond : A -> Prop) (l : list A) :=
match l with
| nil => 0
| h :: t =>
if excluded_middle_informative (cond h) then 0 else S (findP cond t)
end.
Lemma findP_spec A (cond : A -> Prop) (l : list A)
n (IN: In n l) (COND: cond n) d :
cond (nth (findP cond l) l d) /\
forall j, j < findP cond l -> ~ cond (nth j l d).
Proof.
induction l; ins; desf; splits; ins; desf; try lia; intuition.
eauto using lt_S_n.
Qed.
Lemma exists_min (cond : nat -> Prop) (H: exists n, cond n) :
exists n, cond n /\ forall j, j < n -> ~ cond j.
Proof.
desc; assert (IN: In n (List.seq 0 (S n))).
by apply in_seq; lia.
assert (L: findP cond (List.seq 0 (S n)) < S n).
{
rewrite <- (seq_length (S n) 0) at 2.
revert IN; generalize (List.seq 0 (S n)).
induction l; ins; desf; intuition.
}
forward eapply findP_spec with (cond := cond) (l := List.seq 0 (S n)) (d := 0)
as X; desc; eauto.
rewrite seq_nth in *; ins.
eexists; split; eauto; ins; specialize_full X0; eauto.
rewrite seq_nth in *; ins; lia.
Qed.
Definition fcompose A B C (f : B -> C) (g: A -> B) x :=
f (g x).
Fixpoint fexp A (f : A -> A) n :=
match n with
0 => (fun x => x)
| S n => fcompose f (fexp f n)
end.
Lemma fcompose_id_l A B (f: A -> B) :
fcompose (fun x => x) f = f.
Proof. done. Qed.
Lemma fcompose_id_r A B (f: A -> B) :
fcompose f (fun x => x) = f.
Proof. done. Qed.
Lemma fcompose_assoc A B C D (f: C -> D) (g : B -> C) (h : A -> B) :
fcompose (fcompose f g) h = fcompose f (fcompose g h).
Proof. done. Qed.
Lemma fexpS A (f : A -> A) n x :
fexp f n (f x) = f (fexp f n x).
Proof.
by revert x; induction n; ins; unfold fcompose; rewrite IHn.
Qed.
Lemma fexp_plus A (f : A -> A) n m :
fexp f (n + m) = fcompose (fexp f n) (fexp f m).
Proof.
by induction n; ins; rewrite IHn.
Qed.
Lemma lt_funI f (ONE: forall x, x < f x) i j (LT: i < j) d :
fexp f i d < fexp f j d.
Proof.
revert i LT; induction j; ins; try lia.
destruct (eqP i j); desf; eauto.
eapply lt_trans, ONE; apply IHj; lia.
Qed.
Definition lt_size A i (s : A -> Prop) :=
exists dom, NoDup dom /\ (forall x, In x dom -> s x) /\ i < length dom.
Lemma lt_size_inhabited A (s : A -> Prop) i (LT : lt_size i s) : inhabited A.
Proof.
destruct LT as [[]]; ins; desf; lia.
Qed.
Lemma lt_size_infinite A (s : A -> Prop) (INF : ~ set_finite s) i : lt_size i s.
Proof.
assert (C: forall l, exists x, s x /\ ~ In x l).
{ ins; apply NNPP; intro X.
apply INF; exists l; ins; apply NNPP; eauto. }
apply choice in C; desc.
set (go := fix go n := match n with
| 0 => f nil :: nil
| S n => f (go n) :: go n
end).
exists (go i); splits; induction i; ins; desf; eauto;
try apply C; try lia.
apply nodup_cons; split; ins; apply C.
Qed.
Section countable.
Variable A : Type.
Definition enumerates (f : nat -> A) (s : A -> Prop) :=
<< RNG: forall i, s (f i) >> /\
<< INJ: forall i j (EQ: f i = f j), i = j >> /\
<< SUR: forall a (IN: s a), exists i, f i = a >>
\/ exists n,
<< RNG: forall i (LTi: i < n), s (f i) >> /\
<< INJ: forall i (LTi: i < n) j (LTj: j < n) (EQ: f i = f j), i = j >> /\
<< SUR: forall a (IN: s a), exists i, i < n /\ f i = a >>.
Definition countable (s : A -> Prop) :=
~ inhabited A \/ exists nu, enumerates nu s.
Lemma enumeratesE f s :
enumerates f s <->
<< RNG: forall i (LTi: lt_size i s), s (f i) >> /\
<< INJ: forall i (LTi: lt_size i s) j (LTj: lt_size j s) (EQ: f i = f j),
i = j >> /\
<< SUR: forall a (IN: s a), exists i, lt_size i s /\ f i = a >>.
Proof.
unfold enumerates; split; ins; desf.
{ splits; ins; eauto.
eapply SUR in IN; desc; exists i; split; ins.
exists (map f (List.seq 0 (S i))); splits; ins;
try rewrite length_map, length_seq; ins; desf.
apply nodup_map; eauto using nodup_seq.
rewrite in_map_iff in *; desf. }
{ assert (LTI: forall i, lt_size i s -> i < n).
{ ins; red in H; desc.
replace n with (length (map f (List.seq 0 n))).
2: by rewrite length_map, length_seq.
eapply Nat.lt_le_trans; eauto.
ins; apply NoDup_incl_length; ins.
red; ins; apply H0, SUR in H2; desf.
by apply in_map, in_seq0_iff. }
splits; ins; eauto.
apply SUR in IN; desf; exists i; split; ins.
exists (map f (List.seq 0 n)); splits; ins;
try rewrite length_map, length_seq; ins; desf.
apply nodup_map; eauto using nodup_seq.
red; ins; rewrite in_seq0_iff in *; eauto.
ins; rewrite in_map_iff in *; desf; rewrite in_seq0_iff in *; eauto.
}
destruct (classic (set_finite s)) as [[dom X]|INF].
{ right; exists (length (undup (filterP s dom))).
assert (LTI: forall i, lt_size i s -> i < length (undup (filterP s dom))).
{ ins; red in H; desc.
eapply Nat.lt_le_trans; eauto.
apply NoDup_incl_length; ins.
red; ins; apply H0 in H2; desf.
apply in_undup_iff, in_filterP_iff; eauto. }
assert (LTI': forall i, i < length (undup (filterP s dom)) -> lt_size i s).
{ exists (undup (filterP s dom)); splits; ins.
apply in_undup_iff, in_filterP_iff in H0; desf. }
splits; ins; eauto; apply SUR in IN; desf; eauto. }
{ left; splits; ins; eauto using lt_size_infinite.
eapply SUR in IN; desf; eauto. }
Qed.
Lemma finite_countable s (F: set_finite s) : countable s.
Proof.
destruct F as [l H]; red.
destruct (classic (inhabited A)) as [[a]|]; auto.
right; exists (fun i => nth i (undup (filterP s l)) a).
right; exists (length (undup (filterP s l))); splits; unnw; ins.
- apply nth_In with (d:=a) in LTi.
rewrite in_undup_iff, in_filterP_iff in LTi; desf.
- eapply NoDup_nth; eauto.
- apply In_nth, in_undup_iff, in_filterP_iff; eauto.
Qed.
Lemma surjection_countable (f : nat -> A) (s : A -> Prop)
(SUR: forall a (IN: s a), exists i, f i = a) :
countable s.
Proof.
tertium_non_datur (set_finite s); eauto using finite_countable.
assert (N: forall i, exists k, i < k /\ s (f k) /\ ~ In (f k) (mk_list (S i) f) /\
forall j, j < k -> s (f j) ->
In (f j) (mk_list (S i) f)).
{
assert (M: forall i, exists a, s a /\ forall j, j <= i -> f j <> a).
{ ins; apply NNPP; intro X; apply H.
exists (mk_list (S i) f); intros; apply in_mk_list_iff.
eapply not_ex_all_not with (n:=x) in X; clarify_not; eauto with arith. }
intros; specialize (M i); desc.
specialize_full SUR; eauto; desf.
destruct (le_lt_dec i0 i); [by edestruct M0; eauto|].
revert M M0; rewrite (le_plus_minus (S i) i0); auto with arith.
generalize (i0 - S i) as n; intros.
exists (S i + findP (fun x => s x /\ ~ In x (mk_list (S i) f))
(mk_list (S n) (fun x => (f (S i + x))))).
forward eapply findP_spec
with (cond := fun x => s x /\ ~ In x (mk_list (S i) f)) (d := f 0)
(l := mk_list (S n) (fun x => (f (S i + x)))) as K; desc; eauto.
by apply in_mk_list_iff; eauto.
split; try done; rewrite in_mk_list_iff; intro X; desf.
by symmetry in X0; eapply M0 in X0; eauto with arith.
rewrite nth_mk_list in *; desf.
by rewrite in_mk_list_iff in *;
destruct K1; eauto with arith.
splits; auto with arith; intros; rewrite in_mk_list_iff.
destruct (le_lt_dec j i).
by exists j; auto with arith.
specialize (K0 (j - S i)).
rewrite nth_mk_list in K0; desf; [lia|].
rewrite le_plus_minus_r, in_mk_list_iff in K0; auto with arith.
apply NNPP; intro; eapply K0; desf; lia. }
apply choice in N; destruct N as [g N].
right.
assert (MID: forall i, exists k, fexp g k 0 <= i < fexp g (S k) 0).
{
induction i; ins; unfold fcompose in *; desf.
- exists 0; split; ins; apply N.
- destruct (eqP (g (fexp g k 0)) (S i)) as [EQ|NEQ];
[exists (S k) |exists k; lia].
split; ins; unfold fcompose; rewrite EQ; ins; apply N.
}
tertium_non_datur (s (f 0)).
{
exists (fun x => f (fexp g x 0)); left; splits; ins.
by destruct i; ins; apply N.
{ destruct (lt_eq_lt_dec i j) as [[LT|]|LT]; ins.
1-2: apply lt_funI with (f:=g) (d:=0) in LT; try (by intros; apply N).
1-2: exfalso.
- destruct j; ins; unfold fcompose in *; try lia.
eapply N with (x := fexp g j 0); rewrite <- EQ.
apply N; ins; rewrite EQ; apply N.
- destruct i; ins; unfold fcompose in *; try lia.
eapply N with (x := fexp g i 0); rewrite EQ.
apply N; ins; rewrite <- EQ; apply N. }
forward eapply exists_min with (cond := fun k => f k = a) as X;
desf; auto.
specialize (MID n); desc.
rewrite Nat.le_lteq in *; desf; eauto.
apply N in MID0; ins.
apply in_mk_list_iff with (n := S _) in MID0.
exfalso; desc; symmetry in MID1; eapply X0 in MID1; ins; lia.
}
{
exists (fun x => f (g (fexp g x 0))); left; splits; ins.
by apply N.
{ destruct (lt_eq_lt_dec i j) as [[LT|]|LT]; ins.
1-2: apply lt_funI with (f:=g) (d:=g 0) in LT; try (by intros; apply N).
1-2: rewrite !fexpS in *; exfalso.
1: eapply N with (x := fexp g j 0); rewrite <- EQ.
2: eapply N with (x := fexp g i 0); rewrite EQ.
1-2: apply N; ins; apply N. }
forward eapply exists_min with (cond := fun k => f k = a) as X;
desf; auto.
specialize (MID n); desc.
rewrite Nat.le_lteq in *; desf; eauto.
2: by destruct k; ins; exists k; ins.
apply N in MID0; ins.
apply in_mk_list_iff with (n := S _) in MID0.
exfalso; desc; symmetry in MID1; eapply X0 in MID1; ins; lia.
}
Qed.
Lemma enumerates_surjection (s : A -> Prop) nu (E : enumerates nu s) :
forall a (IN: s a), exists i, nu i = a.
Proof.
unfold enumerates in *; desf; ins.
specialize_full SUR; eauto; desf; eauto.
Qed.
Lemma countable_subset s s' :
countable s' -> s ⊆₁ s' -> countable s.
Proof.
unfold countable at 1; ins; desf; vauto.
pose proof (enumerates_surjection H).
eapply surjection_countable with (f := nu); eauto.
Qed.
Lemma countable_union s s' :
countable s -> countable s' -> countable (s ∪₁ s').
Proof.
unfold countable at 1 2; ins; desf; vauto.
eapply surjection_countable with
(f := fun x => if Nat.odd x then nu (Nat.div2 x) else nu0 (Nat.div2 x)).
unfold set_union; ins; desf;
eapply enumerates_surjection in IN; eauto; desf.
exists (2 * i); rewrite Nat.odd_mul, Nat.odd_2, Nat.div2_double; ins.
exists (S (2 * i)); rewrite Nat.odd_add_mul_2 with (n := 1),
Nat.div2_succ_double; ins.
Qed.
End countable.
Lemma countable_bunion A (s : A -> Prop) B (ss : A -> B -> Prop)
(K : countable s)
(L : forall a, countable (ss a)) :
countable (⋃₁x ∈ s, ss x).
Proof.
tertium_non_datur (inhabited B) as [Ib|NIb]; vauto.
unfold countable in K, L; desf; vauto.
destruct Ib as [b]; eapply surjection_countable with (f := fun _ => b).
unfold set_bunion; ins; desf; destruct K; vauto.
assert (C: exists f : A -> nat -> B, forall a, enumerates (f a) (ss a)).
{ apply choice with (R := fun x y => enumerates y (ss x)).
intros x; specialize (L x); desf; eauto. }
clear L; desc.
assert (D := fun x => enumerates_surjection (C x)); clear C.
specialize (enumerates_surjection K); clear K; intro K.
apply surjection_countable with
(f := fun n => f (nu (nat_fst n)) (nat_snd n)).
unfold set_bunion; ins; desc.
apply K in IN; desf.
apply D in IN0; desf.
by eexists (nat_tup _ _); rewrite nat_fst_tup, nat_snd_tup.
Qed.
Add Parametric Morphism A : (@countable A) with signature
set_subset --> Basics.impl as countable_mori.
Proof.
red; ins; eauto using countable_subset.
Qed.
Add Parametric Morphism A : (@countable A) with signature
set_equiv ==> iff as countable_more.
Proof.
by unfold set_equiv; split; desf; [rewrite H0|rewrite H].
Qed.
Section prefixes.
Variable A : Type.
Variable r : relation A.
Variable PO : strict_partial_order r.
Variable F : fsupp r.
Definition prefixes (a : A) : list A :=
isort (proj1_sig (constructive_indefinite_description
_ (partial_order_included_in_total_order PO)))
(undup (filterP (fun x => r x a)
(proj1_sig (constructive_indefinite_description
_ (F a))))).
Lemma in_prefixes a b : In a (prefixes b) <-> r a b.
Proof.
unfold prefixes; rewrite in_isort_iff, in_undup_iff; in_simp; intuition.
destruct (constructive_indefinite_description _ (F b)); ins; eauto.
Qed.
Lemma sorted_prefixes a :
exists t, ⟪ INCL: r ⊆ t ⟫
/\ ⟪ TOT : strict_total_order (fun _ => True) t ⟫
/\ ⟪ SORT: StronglySorted t (prefixes a) ⟫.
Proof.
unfold prefixes.
destruct (constructive_indefinite_description
_ (partial_order_included_in_total_order PO)) as [t [INCL TOT]]; ins.
exists t; splits; auto using StronglySorted_isort.
Qed.
Lemma nodup_prefixes a : NoDup (prefixes a).
Proof.
assert (X := sorted_prefixes a); ins; desf.
eapply NoDup_StronglySorted; try apply TOT; auto.
Qed.
Lemma prefixes_r n a b :
list_before (prefixes n) a b -> r b a -> False.
Proof.
assert (X := sorted_prefixes n);
unfold list_before; ins; desf.
rewrite H1 in *.
apply StronglySorted_app_r, StronglySorted_inv, proj2 in SORT.
rewrite Forall_app, Forall_cons in SORT; desc.
apply INCL in H0; eapply TOT; eapply TOT; eauto.
Qed.
End prefixes.
Section enum_ext.
Variable A : Type.
Variable s : A -> Prop.
Variable f : nat -> A.
Variable r : relation A.
Variable PO : strict_partial_order r.
Variable F : fsupp r.
Fixpoint prefix_of_nat n :=
let prev := match n with
0 => nil
| S n => prefix_of_nat n
end in
prev ++ filterP (fun x => ~ In x prev /\ s x) (prefixes PO F (f n) ++ f n :: nil).
Lemma prefix_of_nat_prefix i j (LEQ : i <= j) :
exists l, prefix_of_nat j = prefix_of_nat i ++ l.
Proof.
apply le_plus_minus in LEQ; rewrite LEQ; generalize (j - i) as n.
clear; intro n; rewrite Nat.add_comm; induction n; ins; desf; eauto using app_nil_end.
by rewrite IHn; eexists; rewrite <- app_assoc.
Qed.
Lemma in_prefix_of_nat_iff a n :
In a (prefix_of_nat n) <-> exists i, i <= n /\ r^? a (f i) /\ s a.
Proof.
unfold clos_refl; induction n; ins; in_simp;
repeat (rewrite ?in_app_iff, ?in_prefixes; ins; in_simp).
intuition; desf; eauto; try (destruct i; ins; desf; eauto; lia).
rewrite IHn; clear IHn; intuition; desf; try solve [exists i; splits; auto]; eauto.
all: destruct (eqP i (S n)); [desf|assert (i <= n) by lia]; eauto 8.
all: classical_right; splits; ins; eauto.
Qed.
Lemma in_prefix_of_nat i j (LEQ: i <= j) (S : s (f i)) : In (f i) (prefix_of_nat j).
Proof.
apply prefix_of_nat_prefix in LEQ; desf.
rewrite LEQ; apply in_or_app; left.
destruct i; ins; rewrite filterP_app; ins; desf;
rewrite ?in_app_iff in *; ins; desf; tauto.
Qed.
Lemma in_prefix_of_nat_in x n : In x (prefix_of_nat n) -> s x.
Proof.
induction n; ins; rewrite ?in_app_iff in *; in_simp.
rewrite in_app_iff in *; desf; eauto.
Qed.
Lemma nodup_prefix_of_nat n : NoDup (prefix_of_nat n).
Proof.
destruct PO;
induction n; ins.
all: repeat first [apply conj | apply nodup_filterP | rewrite nodup_app |
rewrite nodup_cons | apply nodup_prefixes ]; ins.
all: red; ins; in_simp; desf; rewrite in_prefixes in *; eauto.
Qed.
Lemma length_prefix_of_nat n (INJ : forall i j, i < j <= n -> f i <> f j)
(SET : forall i, i <= n -> s (f i)) :
n < length (prefix_of_nat n).
Proof.
assert (exists l, Permutation (prefix_of_nat n) (map f (List.seq 0 (S n)) ++ l)).
2: desc; rewrite H, length_app, length_map, length_seq; lia.
generalize (prefix_of_nat n), (fun i => @in_prefix_of_nat i n).
induction n; ins.
by forward apply (H 0); ins; eauto; apply in_split_perm.
forward apply (H (S n)); ins; eauto.
forward apply IHn as X; intros; eauto.
apply INJ; lia.
desf.
rewrite X, in_app_iff, in_map_iff in H0; desf.
rewrite in_seq0_iff in *; eapply INJ in H0; try lia.
apply in_split_perm in H0; desf.
by exists l'; rewrite X, H0, <- (Nat.add_1_r (S n)), seq_add, map_app, <- app_assoc.
Qed.
Lemma list_app_eq_simpl (l l0 l' l0' : list A) :
l ++ l' = l0 ++ l0' ->
length l <= length l0 -> exists lr, l0 = l ++ lr /\ l' = lr ++ l0'.
Proof.
revert l0; induction l; ins; eauto.
destruct l0; ins; desf; try lia.
eapply IHl in H; desf; eauto; lia.
Qed.
Lemma list_app_eq_simpl2 (a : A) (l l0 l' l0' : list A) :
l ++ a :: l' = l0 ++ l0' ->
length l < length l0 -> exists lr, l0 = l ++ a :: lr /\ l' = lr ++ l0'.
Proof.
change (l ++ a :: l') with (l ++ (a :: nil) ++ l'); intros.
rewrite app_assoc in H; apply list_app_eq_simpl in H; desf.
by exists lr; rewrite <- app_assoc.
rewrite length_app; ins; lia.
Qed.
Lemma prefix_nat_r n a b
(P: list_before (prefix_of_nat n) a b)
(R: r b a) : False.
Proof.
destruct PO as [IRR T].
induction n; ins; rewrite filterP_app in *; ins; desf;
rewrite ?app_nil_r; desf.
all: repeat (rewrite list_before_app in *; desf;
try (eby eapply list_before_nil);
try (eby eapply list_before_singl); ins; desf); in_simp;
try rewrite in_prefixes in *; eauto.
all: try (rewrite ?in_app_iff in *; ins; desf; in_simp).
all: try rewrite in_prefixes in *; eauto.
all: try rewrite in_prefix_of_nat_iff in *; unfold clos_refl in *; desf; eauto 10.
all: try (match goal with H: _ |- _ => eapply list_before_filterP_inv in H;
[|by apply nodup_prefixes]
end); eauto using prefixes_r.
Qed.
Lemma wlog_lt (Q : nat -> nat -> Prop) :
(forall x, Q x x) -> (forall x y, x < y -> Q x y) -> (forall x y, y < x -> (forall x y, x < y -> Q x y) -> Q x y) -> forall x y, Q x y.
Proof. ins; destruct (lt_eq_lt_dec x y) as [[]|]; desf; eauto. Qed.
Lemma enum_ext (E: enumerates f s) :
exists f, enumerates f s /\
forall i j (Li : lt_size i s) (Lj: lt_size j s)
(R: r (f i) (f j)), i < j.
Proof.
exists (fun n => nth n (prefix_of_nat n) (f 0)); split.
{ red in E; des; [left|right]; splits; try exists n; splits.
{ ins; destruct (nth_in_or_default i (prefix_of_nat i) (f 0)) as [X|X];
[apply in_prefix_of_nat_in in X| rewrite X]; eauto. }
{ ins.
revert EQ.
apply wlog_lt with (x := i) (y := j); ins; [|by symmetry; eauto].
assert (L: y < length (prefix_of_nat y)).
{ apply length_prefix_of_nat; eauto.
red; intros; eapply INJ in H1; desf; lia. }
assert (Lx: x < length (prefix_of_nat x)).
{ apply length_prefix_of_nat; eauto.
red; intros; eapply INJ in H1; desf; lia. }
forward apply prefix_of_nat_prefix with (i := x) (j := y) as X; desc; try lia.
forward apply nodup_prefix_of_nat with (n:=y) as Y; try done.
rewrite NoDup_nth with (d := f 0) in Y; apply Y; eauto; try lia.
rewrite X at 1; rewrite nth_app; desf; lia. }
{ ins; apply SUR in IN; desf.
forward apply in_prefix_of_nat with (i := i) (j := i) as X; ins.
apply in_split in X; desf.
exists (length l1).
destruct (le_lt_dec i (length l1)) as [Y|Y].
apply prefix_of_nat_prefix in Y; desc.
rewrite Y, X, appA, nth_app; desf; try lia.
rewrite Nat.sub_diag; done.
forward apply (@prefix_of_nat_prefix (length l1) i) as Z; desc; try lia.
forward apply length_prefix_of_nat with (n := length l1); eauto.
red; intros; apply INJ in H0; desf; lia.
rewrite Z in X; symmetry in X; ins.
apply list_app_eq_simpl2 in X; desc; try lia.
rewrite X, nth_app, Nat.sub_diag; ins; desf; lia. }
{ ins; destruct (nth_in_or_default i (prefix_of_nat i) (f 0)) as [X|X];
[apply in_prefix_of_nat_in in X| rewrite X]; eauto.
apply RNG; lia.
}
{ ins.
revert LTi LTj EQ.
apply wlog_lt with (x := i) (y := j); ins; [|by symmetry; eauto].
assert (L: y < length (prefix_of_nat y)).
{ apply length_prefix_of_nat; [|intros; apply RNG; lia].
red; intros; eapply INJ in H1; desf; lia. }
assert (Lx: x < length (prefix_of_nat x)).
{ apply length_prefix_of_nat; [|intros; apply RNG; lia].
red; intros; eapply INJ in H1; desf; lia. }
forward apply prefix_of_nat_prefix with (i := x) (j := y) as X; desc; try lia.
forward apply nodup_prefix_of_nat with (n:=y) as Y; try done.
rewrite NoDup_nth with (d := f 0) in Y; apply Y; eauto; try lia.
rewrite X at 1; rewrite nth_app; desf; lia. }
{ ins; apply SUR in IN; desf.
forward apply in_prefix_of_nat with (i := i) (j := i) as X; ins; eauto.
apply in_split in X; desf.
exists (length l1).
destruct (le_lt_dec i (length l1)) as [Y|Y].
apply prefix_of_nat_prefix in Y; desc.
rewrite Y, X, appA, nth_app; desf; try lia.
rewrite Nat.sub_diag; splits; ins.
assert (length (prefix_of_nat i) <= n).
{ generalize (nodup_prefix_of_nat i),
(fun x => in_prefix_of_nat_in x i).
generalize (prefix_of_nat i); clear -SUR; ins.
assert (X: forall x, In x l -> In x (map f (List.seq 0 n))).
by intros; apply H0, SUR in H1; desf; apply in_map, in_seq0_iff.
clear SUR H0.
eapply NoDup_incl_length in X; ins.
by rewrite length_map, length_seq in *. }
rewrite X, length_app in *; ins; lia.
forward apply (@prefix_of_nat_prefix (length l1) i) as Z; desc; try lia.
forward apply length_prefix_of_nat with (n := length l1).
red; intros; apply INJ in H0; desf; lia.
intros; apply RNG; lia.
rewrite Z in X; symmetry in X; ins.
apply list_app_eq_simpl2 in X; desc; try lia.
rewrite X, nth_app, Nat.sub_diag; splits; ins; desf; lia. }
}
intros.
destruct (lt_eq_lt_dec j i) as [[]|]; ins; desf; exfalso; [|eby eapply PO].
forward eapply prefix_of_nat_prefix with (i:=j) (j:=i) as X; try lia; desc.
red in E; desf.
forward eapply length_prefix_of_nat with (n := i) as LEN; try red; ins; desc; eauto.
eapply INJ in H0; desf; lia.
forward eapply length_prefix_of_nat with (n := j) as LENj; try red; ins; desc; eauto.
eapply INJ in H0; desf; lia.
forward apply list_before_nth with (l := prefix_of_nat i) (i := j) (j := i) (d := f 0);
splits; ins; eauto using nodup_prefix_of_nat.
rewrite X in H at 2; rewrite app_nth1 in H; eauto using prefix_nat_r.
assert (Lin : i < n). {
clear - SUR Li. red in Li; desc.
eapply lt_le_trans; eauto.
replace n with (length (map f (List.seq 0 n)))
by now (rewrite length_map, length_seq).
apply NoDup_incl_length; try red; ins.
by apply Li0, SUR in H; desf; apply in_map, in_seq0_iff.
}
forward eapply length_prefix_of_nat with (n := i) as LEN; try red; ins; desc; eauto.
eapply INJ in H0; desf; lia.
eapply RNG; lia.
forward eapply length_prefix_of_nat with (n := j) as LENj; try red; ins; desc; eauto.
eapply INJ in H0; desf; lia.
eapply RNG; lia.
forward apply list_before_nth with (l := prefix_of_nat i) (i := j) (j := i) (d := f 0);
splits; ins; eauto using nodup_prefix_of_nat.
rewrite X in H at 2; rewrite app_nth1 in H; eauto using prefix_nat_r.
Qed.
End enum_ext.
Lemma countable_ext A (s : A -> Prop) (C: countable s)
(r : relation A) (PO : strict_partial_order r) (F : fsupp r) :
~ inhabited A \/
exists f,
enumerates f s /\
forall i j (Li : lt_size i s) (Lj: lt_size j s)
(R: r (f i) (f j)), i < j.
Proof.
destruct C; desf; eauto using enum_ext.
Qed.