-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathHahnPath.v
700 lines (611 loc) · 24.4 KB
/
HahnPath.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
(******************************************************************************)
(** * Decomposing paths and cycles *)
(******************************************************************************)
Require Import Arith micromega.Lia.
Require Import HahnBase HahnList HahnRelationsBasic.
Require Import HahnEquational HahnMaxElt HahnRewrite.
Require Import HahnDom HahnMinPath.
Set Implicit Arguments.
Lemma wf_finite :
forall A (r: relation A) (ACYC: acyclic r) l (DOMA : doma r (fun x => List.In x l)),
well_founded r.
Proof.
unfold acyclic; ins.
rewrite ct_step; red; ins; apply ct_doma in DOMA; revert DOMA.
generalize (transitive_ct (r:=r)) as T; revert ACYC.
generalize r⁺; clear r; intro r.
remember (length l) as n.
revert r l Heqn.
induction n.
by destruct l; ins; econs; ins; exfalso; eauto.
econs; intros b Rba.
assert (IN:=DOMA _ _ Rba); apply in_split in IN; desf.
rewrite app_length in *; ins.
forward apply (IHn (restr_rel (fun x => x <> b) r) (l1 ++ l2));
eauto using irreflexive_restr, transitive_restr.
by rewrite app_length in *; ins; lia.
by unfold restr_rel; red; ins; desf; eapply DOMA in REL; rewrite <- Permutation_middle in *; ins; desf; eauto.
clear - Rba ACYC T; unfold restr_rel.
econs; ins.
destruct H; specialize (H y); specialize_full H; splits; try intro; desf; eauto.
clear Rba.
by induction H; econs; ins; eapply H1; splits; try intro; desf; eauto.
Qed.
(******************************************************************************)
Lemma rt_unionE A (r r' : relation A) : (r ∪ r')* ≡ r'* ⨾ (r ⨾ r'*)*.
Proof.
split; eauto 8 using inclusion_seq_rt, inclusion_rt_rt2 with hahn.
apply inclusion_rt_ind_left; relsf; unionL; rels.
rewrite <- seqA; rels; rewrite rtE at 2; relsf.
Qed.
Lemma ct_unionE A (r r' : relation A) : (r ∪ r')⁺ ≡ r'⁺ ∪ r'* ⨾ (r ⨾ r'*)⁺.
Proof.
rewrite ct_begin, rt_unionE; relsf; rewrite <- seqA; rels.
split; unionL; eauto using inclusion_seq_r, inclusion_seq_l with hahn.
by rewrite rtE; relsf; unionL; eauto with hahn.
by rewrite rtE at 1; relsf; unionL; eauto with hahn.
Qed.
(******************************************************************************)
(** Extension of a relation with a singleton *)
(******************************************************************************)
Lemma ct_union_singl A (r : relation A) a b :
(r ∪ singl_rel a b)⁺ ≡ r⁺ ∪ r* ⨾ singl_rel a b ⨾ r*.
Proof.
split.
{ unfold inclusion, union, singl_rel, seq.
induction 1; desf; eauto 9 using clos_trans, clos_refl_trans, clos_trans_in_rt.
}
eapply inclusion_union_l; eauto with hahn.
rewrite <- rt_ct, ct_begin; eauto with hahn.
Qed.
Lemma rt_union_singl A (r : relation A) a b :
(r ∪ singl_rel a b)* ≡ r* ∪ r* ⨾ singl_rel a b ⨾ r*.
Proof.
by rewrite rtE, rtE at 1; rewrite ct_union_singl, !unionA.
Qed.
Lemma ct_union_singl_max A (r : relation A) a b (MAX: max_elt r b) :
(r ∪ singl_rel a b)⁺ ≡ r⁺ ∪ r* ⨾ singl_rel a b.
Proof.
rewrite ct_union_singl, seq_singl_max_rt; ins.
Qed.
Lemma rt_union_singl_max A (r : relation A) a b (MAX: max_elt r b) :
(r ∪ singl_rel a b)* ≡ r* ⨾ (singl_rel a b) ^?.
Proof.
rewrite rt_union_singl, crE, seq_singl_max_rt; relsf.
Qed.
(******************************************************************************)
(** Union with a total relation *)
(******************************************************************************)
Section PathUnionTotal.
Variable A : Type.
Implicit Type r : relation A.
Lemma path_decomp_u_total r dom r' (T: is_total dom r') (DB: domb r' dom)
(IRR: irreflexive (r* ⨾ r'⁺)) :
(r ∪ r')⁺ ≡ r⁺ ∪ r* ⨾ r'⁺ ⨾ r*.
Proof.
split; ins.
{ intros ? ? C; unfold seq, union in *.
induction C; desf; eauto 8 using rt_refl, clos_trans;
eauto 8 using clos_trans_in_rt, rt_trans.
destruct (classic (z1 = z3)) as [|NEQ]; desf;
eauto 6 using t_trans, rt_trans.
eapply T in NEQ; desf.
by exfalso; eauto 10 using clos_trans, rt_trans.
by eauto 8 using clos_trans, rt_trans.
by eapply t_rt_step in IHC0; desf; eauto.
by eapply t_rt_step in IHC4; desf; eauto.
}
eapply inclusion_union_l; eauto with hahn.
rewrite <- rt_ct with (r := r ∪ r'),
<- ct_rt with (r := r ∪ r'); eauto 8 with hahn.
Qed.
End PathUnionTotal.
(******************************************************************************)
(** Path absorption properties *)
(******************************************************************************)
Section PathAbsorb.
Variable A : Type.
Implicit Type r : relation A.
Lemma path_absorb1 r r' (F: r' ⨾ r ⊆ r') :
(r ∪ r')⁺ ≡ r⁺ ∪ r'⁺ ∪ r⁺ ⨾ r'⁺.
Proof.
split; cycle 1.
repeat apply inclusion_union_l; eauto with hahn.
by repeat apply inclusion_seq_trans; eauto with hahn; vauto.
apply inclusion_t_ind_right; relsf;
repeat apply inclusion_union_l;
eauto 10 using inclusion_t_r_t with hahn;
try solve [rewrite (ct_end r'), !seqA, F, <- ct_end; eauto 10 with hahn].
rewrite (ct_end r') at 3; rewrite seqA; eauto 10 with hahn.
Qed.
Lemma path_absorb2 r r' (F: r' ⨾ r ⊆ r) :
(r ∪ r')⁺ ≡ r⁺ ∪ r'⁺ ∪ r⁺ ⨾ r'⁺.
Proof.
split; cycle 1.
repeat apply inclusion_union_l; eauto with hahn.
by repeat apply inclusion_seq_trans; eauto with hahn; vauto.
apply inclusion_t_ind_left; relsf;
repeat apply inclusion_union_l;
eauto 10 using inclusion_r_t_t with hahn;
try solve [rewrite (ct_begin r), <- !seqA, F, <- ct_begin; eauto 10 with hahn].
rewrite (ct_begin r) at 3; rewrite seqA; eauto 10 with hahn.
Qed.
Lemma path_absorb r r' (F: r' ⨾ r ⊆ r \/ r' ⨾ r ⊆ r') :
(r ∪ r')⁺ ≡ r⁺ ∪ r'⁺ ∪ r⁺ ⨾ r'⁺.
Proof.
ins; desf; eauto using path_absorb1, path_absorb2.
Qed.
Lemma path_absorb_lt r r' (F: r' ⨾ r ⊆ r \/ r' ⨾ r ⊆ r') (T: transitive r) :
(r ∪ r')⁺ ≡ r'⁺ ∪ r ⨾ r'*.
Proof.
ins; rewrite path_absorb, rtE; relsf; hahn_rel.
Qed.
Lemma path_absorb_rt r r' (F: r'⨾ r ⊆ r \/ r'⨾ r ⊆ r') (T: transitive r') :
(r ∪ r')⁺ ≡ r⁺ ∪ r* ⨾ r'.
Proof.
ins; rewrite path_absorb, rtE; relsf; hahn_rel.
Qed.
Lemma minus_seq_l r r' (T: transitive r) :
(r ⨾ r') \ r ⊆ r ⨾ (r' \ r).
Proof.
unfold minus_rel, seq; red; ins; desf; repeat eexists; eauto.
Qed.
Lemma minus_seq_r r r' (T: transitive r') :
(r ⨾ r') \ r' ⊆ (r \ r') ⨾ r'.
Proof.
unfold minus_rel, seq; red; ins; desf; repeat eexists; eauto.
Qed.
Lemma seq_rt_absorb_l r r' : r ⨾ r'* ⊆ r ∪ ((r ⨾ r') \ r) ⨾ r'*.
Proof.
unfold seq, union, inclusion, minus_rel; ins; desf.
induction H0 using clos_refl_trans_ind_left; desf; eauto.
destruct (classic (r x z0)); eauto 8 using clos_refl_trans.
right; repeat eexists; eauto using clos_refl_trans.
Qed.
Lemma seq_ct_absorb_l r r' : r ⨾ r'⁺ ⊆ r ∪ ((r ⨾ r') \ r) ⨾ r'*.
Proof.
rewrite <- seq_rt_absorb_l; eauto with hahn.
Qed.
Lemma seq_rt_absorb_r r r' : r* ⨾ r' ⊆ r' ∪ r* ⨾ ((r ⨾ r') \ r').
Proof.
apply inclusion_transpE.
rewrite !transp_union, !transp_seq, !transp_minus, !transp_rt, !transp_seq;
auto using seq_rt_absorb_l, transitive_transp.
Qed.
Lemma seq_ct_absorb_r r r' : r⁺ ⨾ r' ⊆ r' ∪ r* ⨾ ((r ⨾ r') \ r').
Proof.
rewrite <- seq_rt_absorb_r; eauto with hahn.
Qed.
Lemma seq_rt_absorb_lt r r' (T: transitive r) :
r ⨾ r'* ⊆ r ∪ r ⨾ (r' \ r) ⨾ r'*.
Proof.
by rewrite seq_rt_absorb_l, minus_seq_l, seqA.
Qed.
Lemma seq_ct_absorb_lt r r' (T: transitive r) :
r ⨾ r'⁺ ⊆ r ∪ r ⨾ (r' \ r) ⨾ r'*.
Proof.
by rewrite seq_ct_absorb_l, minus_seq_l, seqA.
Qed.
Lemma seq_rt_absorb_rt r r' (T: transitive r') :
r* ⨾ r' ⊆ r' ∪ r* ⨾ (r \ r') ⨾ r'.
Proof.
by rewrite seq_rt_absorb_r, minus_seq_r.
Qed.
Lemma seq_ct_absorb_rt r r' (T: transitive r') :
r⁺ ⨾ r' ⊆ r' ∪ r* ⨾ (r \ r') ⨾ r'.
Proof.
by rewrite seq_ct_absorb_r, minus_seq_r.
Qed.
End PathAbsorb.
(******************************************************************************)
Lemma clos_trans_restr_trans_mid :
forall X (r r' : relation X) f x y
(A : (restr_rel f (r ∪ r'))⁺ x y)
z (B : r y z) w
(C : (restr_rel f (r ∪ r'))⁺ z w),
(restr_rel f (r ∪ r'))⁺ x w.
Proof.
ins; eapply t_trans, t_trans; vauto.
eapply t_step; repeat split; vauto.
by apply clos_trans_restrD in A; desc.
by apply clos_trans_restrD in C; desc.
Qed.
Lemma clos_trans_restr_trans_cycle :
forall X (r r' : relation X) f x y
(A : clos_trans (restr_rel f (r ∪ r')) x y)
(B : r y x),
clos_trans (restr_rel f (r ∪ r')) x x.
Proof.
ins; eapply t_trans, t_step; unfold union; eauto.
red; apply clos_trans_restrD in A; desf; auto.
Qed.
(******************************************************************************)
(** Union of relations where one has a certain domain/codomain. *)
(******************************************************************************)
Section PathDom.
Variable X : Type.
Implicit Type r : relation X.
Lemma path_tur r r' adom bdom
(T: transitive r) (DA: doma r' adom) (DB: domb r' bdom) :
(r ∪ r')⁺ ≡ r ∪ (r ⨾ ⦗adom⦘ ∪ r')⁺ ⨾ (⦗bdom⦘ ⨾ r)^?.
Proof.
split.
rewrite seq_eqv_r, seq_eqv_l.
unfold seq, union, clos_refl; intros ? ? P.
apply clos_trans_tn1 in P; induction P; desf; eauto 14 using clos_trans; clear P.
apply clos_trans_t1n in IHP; induction IHP;
intuition; desf; eauto 14 using clos_trans.
rewrite inclusion_seq_eqv_r, inclusion_seq_eqv_l.
eauto using inclusion_t_r_t with hahn.
Qed.
Lemma path_ur r r' adom bdom (DA: doma r' adom) (DB: domb r' bdom) :
(r ∪ r')⁺ ≡ r⁺ ∪ (r⁺ ⨾ ⦗adom⦘ ∪ r')⁺ ⨾ (⦗bdom⦘ ⨾ r⁺)^?.
Proof.
by ins; rewrite <- path_tur, ct_of_union_ct_l; eauto; vauto.
Qed.
Lemma path_tur2 r r' adom bdom
(T: transitive r')
(DA: doma r adom) (DB: domb r bdom) :
(r ∪ r')⁺ ≡ r' ∪ (r' ⨾ ⦗adom⦘)^? ⨾ (r ∪ ⦗bdom⦘ ⨾ r')⁺.
Proof.
split.
rewrite seq_eqv_r, seq_eqv_l.
unfold seq, union, clos_refl; intros ? ? P.
apply clos_trans_t1n in P; induction P; desf; eauto 14 using clos_trans; clear P.
apply clos_trans_tn1 in IHP0; induction IHP0;
intuition; desf; eauto 14 using clos_trans.
rewrite inclusion_seq_eqv_r, inclusion_seq_eqv_l.
eauto using inclusion_r_t_t with hahn.
Qed.
Lemma path_ur2 r r' adom bdom (A: doma r adom) (B: domb r bdom) :
(r ∪ r')⁺ ≡ r'⁺ ∪ (r'⁺ ⨾ ⦗adom⦘)^? ⨾ (r ∪ ⦗bdom⦘ ⨾ r'⁺)⁺.
Proof.
ins; rewrite <- path_tur2, ct_of_union_ct_r; eauto; vauto.
Qed.
End PathDom.
(** Misc properties *)
(******************************************************************************)
Lemma clos_trans_imm :
forall X (r : relation X) (I: irreflexive r)
(T: transitive r) L (ND: NoDup L) a b
(D: forall c, r a c -> r c b -> In c L)
(REL: r a b),
(immediate r)⁺ a b.
Proof.
intros until 3; induction ND; ins; vauto.
destruct (classic (r a x /\ r x b)) as [|N]; desf;
[apply t_trans with x|]; eapply IHND; ins;
forward eapply (D c); eauto; intro; desf; exfalso; eauto.
Qed.
Lemma clos_trans_rotl A (r r' : relation A) :
(r ⨾ r')⁺ ≡ r ⨾ (r' ⨾ r)* ⨾ r'.
Proof.
split; red; ins; unfold seq in *; desf.
by induction H; desf; eauto 10 using clos_refl_trans.
cut (exists m, clos_refl_trans (r ⨾ r') x m /\ r m z0); unfold seq in *.
by ins; desf; eapply t_rt_step; eauto.
clear H1; induction H0 using clos_refl_trans_ind_left; desf;
eauto 8 using clos_refl_trans.
Qed.
Lemma immediate_clos_trans_elim A (r : relation A) a b :
immediate r⁺ a b ->
r a b /\ (forall c, r⁺ a c -> r⁺ c b -> False).
Proof.
unfold immediate; ins; desf; split; ins.
apply t_step_rt in H; desf.
apply clos_refl_transE in H1; desf; exfalso; eauto using t_step.
Qed.
Lemma clos_trans_immediate1 A (r : relation A) (T: transitive r) a b :
(immediate r)⁺ a b -> r a b.
Proof.
unfold immediate; induction 1; desf; eauto.
Qed.
Lemma clos_trans_immediate2 A (r : relation A)
(T: transitive r) (IRR: irreflexive r) dom
(D: domb r (fun x => In x dom)) a b :
r a b ->
(immediate r)⁺ a b.
Proof.
assert (D': forall c, r a c -> r c b -> In c dom).
by ins; apply D in H; desf.
clear D; revert a b D'.
remember (length dom) as n; revert dom Heqn; induction n.
by destruct dom; ins; vauto.
ins; destruct (classic (exists c, r a c /\ r c b)); desf.
2: by eapply t_step; split; ins; eauto.
forward eapply D' as X; eauto; apply in_split in X; desf.
rewrite app_length in *; ins; rewrite <- plus_n_Sm, <- app_length in *; desf.
apply t_trans with c; eapply IHn with (dom := l1 ++ l2); ins;
forward eapply (D' c0); eauto;
rewrite !in_app_iff; ins; desf; eauto; exfalso; eauto.
Qed.
(** Union with a transitive relation *)
(******************************************************************************)
Section PathUnionTransitive.
Variable A : Type.
Implicit Type r : relation A.
Lemma inclusion_seq_l r r1 r2 : r ⊆ r1 -> reflexive r2 -> r ⊆ r1 ⨾ r2.
Proof. firstorder. Qed.
Lemma inclusion_seq_r r r1 r2 : r ⊆ r2 -> reflexive r1 -> r ⊆ r1 ⨾ r2.
Proof. firstorder. Qed.
Hint Resolve inclusion_seq_l inclusion_seq_r : hahn_full.
Lemma path_ut r r' (T: transitive r') :
(r ∪ r')* ≡ r* ⨾ (r' ⨾ r⁺)* ⨾ r'^?.
Proof.
split.
- apply inclusion_rt_ind; hahn_rel; eauto 4 with hahn hahn_full.
apply transitiveI.
rewrite crE at 1; relsf; unionL.
hahn_frame_r; rewrite rtE with (r:=r' ⨾ r⁺) at 1; relsf; hahn_rel.
hahn_frame_l; rewrite ct_end, !seqA; rels.
by apply inclusion_seq_rt; ins; rewrite <- seqA, <- ct_begin; eauto with hahn.
hahn_frame_l; rewrite rtE with (r:=r) at 1; relsf; hahn_rel; [|hahn_frame_r].
rewrite rtE with (r:=r' ⨾ r⁺) at 2; relsf; hahn_rel.
hahn_frame_r; rewrite ct_begin with (r:=r' ⨾ r⁺); rewrite !seqA; relsf.
by apply inclusion_seq_rt; ins; rewrite <- seqA, <- ct_begin; eauto with hahn.
by apply inclusion_seq_rt; ins; rewrite <- seqA, <- ct_begin; eauto with hahn.
- rewrite inclusion_t_rt.
eauto 10 using inclusion_seq_trans, inclusion_rt_rt2 with hahn.
Qed.
Lemma path_ut2 r r' (T: transitive r') :
(r ∪ r')⁺ ≡ r⁺ ∪ r*⨾ (r'⨾ r⁺)* ⨾ r'⨾ r*.
Proof.
split.
rewrite ct_end, path_ut; ins; relsf.
rewrite !seqA, (rewrite_trans_seq_cr_l T), crE; relsf; hahn_rel.
2: by rewrite (rtE r) at 3; relsf.
rewrite (rt_end (r' ⨾ r⁺)) at 1; relsf.
rewrite <- ct_end, !seqA; hahn_rel.
rewrite inclusion_t_rt with (r:=r) at 2; rewrite <- ct_end.
rewrite inclusion_t_rt with (r:=r) at 2; hahn_rel.
hahn_rel.
rewrite inclusion_t_rt, <- (rt_ct (r ∪ r')); seq_rewrite <- ct_end.
apply inclusion_seq_mon; eauto with hahn.
apply inclusion_t_t2; rewrite ct_begin; eauto with hahn.
Qed.
End PathUnionTransitive.
(** More path union properties *)
(******************************************************************************)
Section PathUnion.
Variable A : Type.
Implicit Type r : relation A.
Lemma path_ut_first r r' :
(r ∪ r')⁺ ≡ r⁺ ∪ r* ⨾ r' ⨾ (r ∪ r')*.
Proof.
split.
- apply inclusion_t_ind_right.
+ apply inclusion_union_l.
* apply inclusion_union_r; left; eauto with hahn.
* apply inclusion_union_r; right; basic_solver 10.
+ relsf; repeat apply inclusion_union_l.
* apply inclusion_union_r; left.
unfold inclusion, seq; ins; desf; vauto.
* apply inclusion_union_r; right.
rewrite !seqA.
arewrite (r ⊆ (r ∪ r')*) at 3.
rewrite rt_rt.
done.
* basic_solver 10.
* apply inclusion_union_r; right.
rewrite !seqA.
arewrite (r' ⊆ (r ∪ r')*) at 3.
rewrite rt_rt.
done.
- arewrite (r ⊆ (r ∪ r')⁺) at 1.
arewrite (r* ⊆ (r ∪ r')*) at 1.
arewrite (r' ⊆ (r ∪ r')⁺) at 3.
rels.
Qed.
Lemma path_ut_last r r' :
(r ∪ r')⁺ ≡ r⁺ ∪ (r ∪ r')* ⨾ r' ⨾ r*.
Proof.
split.
- apply inclusion_t_ind_right.
+ unionL; [unionR left | unionR right]; unfolder; eauto using t_step, rt_refl.
+ relsf; unionL.
* rewrite ct_end at 2; basic_solver 10.
* rewrite !seqA; rewrite <- ct_end; basic_solver 10.
* arewrite (r ⊆ (r ∪ r')); basic_solver 10.
* arewrite (r ⊆ (r ∪ r')) at 2.
arewrite (r' ⊆ (r ∪ r')*) at 2.
rels; basic_solver 10.
- arewrite (r ⊆ (r ∪ r')⁺) at 1.
arewrite (r ⊆ (r ∪ r')*) at 3. arewrite (r' ⊆ (r ∪ r')⁺) at 3.
rels.
Qed.
Lemma path_union (r r': relation A) : (r ∪ r')⁺ ⊆ r⁺ ∪ (r* ⨾ r')⁺ ⨾ r*.
Proof.
apply inclusion_t_ind_right.
unionL; [vauto|].
by rewrite rtE; rewrite <- !ct_step; basic_solver 12.
relsf; unionL.
- by unionR left; rewrite ct_unit.
- by rewrite !seqA; rewrite <- ct_end; basic_solver 12.
- rewrite (ct_step (r⁺ ⨾ r')).
rewrite <- inclusion_t_rt at 1; basic_solver 22.
- rewrite !seqA, inclusion_t_rt at 1.
rewrite <- (ct_end (r* ⨾ r')); basic_solver 12.
Qed.
Lemma path_union1 (r r': relation A) : (r ∪ r')⁺ ⊆ r'⁺ ∪ r'* ⨾ (r ∪ r ⨾ r'⁺)⁺.
Proof.
apply inclusion_t_ind_right.
unionL; [|vauto].
by rewrite rtE; rewrite <- !ct_step; basic_solver 12.
relsf; unionL; rewrite ?seqA.
- unionR right.
arewrite (r'⁺ ⊆ r'*); hahn_frame.
rewrite <- !ct_step; basic_solver 12.
- by arewrite (r ⊆ (r ∪ r ⨾ r'⁺)*) at 3; relsf.
- arewrite (r'⁺ ⊆ r'*) at 1.
rewrite <- ct_end; basic_solver.
- unionR right.
rewrite ct_end, !seqA.
arewrite ((r ∪ r ⨾ r'⁺) ⨾ r' ⊆ (r ∪ r ⨾ r'⁺)).
relsf; unionL.
* rewrite <- !ct_step; basic_solver 12.
* rewrite !seqA.
arewrite (r'⁺ ⊆ r'*) at 1.
rewrite <- ct_end; basic_solver.
* relsf.
Qed.
Lemma path_union2 (r r': relation A) :
(r ∪ r')⁺ ⊆ r⁺ ∪ r'⁺ ⨾ r* ∪ r'* ⨾ (r⁺ ⨾ r'⁺)⁺ ⨾ r*.
Proof.
rewrite path_union1; unionL.
basic_solver 12.
rewrite path_union.
relsf.
unionL.
basic_solver 12.
arewrite (r* ⨾ r ⊆ r⁺).
basic_solver 12.
Qed.
End PathUnion.
Lemma ct_minus_transitive {A} (r r': relation A) (TR : transitive r) :
r'⁺ \ r ⊆ (r' ∩ r)* ⨾ (r' \ r) ⨾ r'*.
Proof.
ins.
arewrite (r' ⊆ (r' ∩ r) ∪ (r' \ r)) at 1.
{ by unfolder; ins; desf; tauto. }
rewrite path_ut_first, minus_union_l.
unionL.
{ by arewrite (r' ∩ r ⊆ r); relsf. }
arewrite ((r' ∩ r) ∪ (r' \ r) ⊆ r') at 1.
basic_solver 12.
Qed.
(** Union with a total relation *)
(******************************************************************************)
Lemma path_utd_helper :
forall X (r r' : relation X) (T: transitive r') dom
(F: is_total dom r') (DA: doma r' dom) (DB: domb r' dom) x y
(P: clos_trans (fun x y => r x y \/ r' x y) x y),
r⁺ x y \/
(exists z w, r* x z /\ r' z w /\ r* w y) \/
(exists z w, r' z w /\ r* w z).
Proof.
ins; induction P; desf; eauto 9 using clos_trans, clos_refl_trans, clos_trans_in_rt.
right; destruct (classic (z1 = w)) as [|NEQ]; desf; eauto 8 using clos_refl_trans.
eapply F in NEQ; desf; eauto 8 using clos_refl_trans.
Qed.
Lemma path_utd :
forall X (r r' : relation X) (T: transitive r') dom
(F: is_total dom r') (DA: doma r' dom) (DB: domb r' dom)
(I': irreflexive (r' ⨾ r*)),
(r ∪ r')⁺ ≡ r⁺ ∪ r* ⨾ r' ⨾ r*.
Proof.
split.
unfold inclusion, seq, union in *; ins; desf.
eapply path_utd_helper with (2:=F) in H; desf; eauto 8; exfalso; eauto 8.
apply inclusion_union_l; eauto with hahn.
rewrite <- rt_ct, ct_begin; eauto with hahn.
Qed.
(** Paths with disconnected relations *)
(******************************************************************************)
Lemma ct_no_step A (r : relation A) (D: r ⨾ r ≡ ∅₂) : r⁺ ≡ r.
Proof.
by apply ct_of_trans, transitiveI; rewrite D.
Qed.
Lemma ct_ct_disj A (r : relation A) (D: r ⨾ r ≡ ∅₂) : r⁺ ⨾ r⁺ ≡ ∅₂.
Proof.
rewrite ct_no_step; ins.
Qed.
Lemma irreflexive_disj A (r : relation A) (D: r ⨾ r ≡ ∅₂) : irreflexive r.
Proof.
red; ins; eapply D; vauto.
Qed.
Lemma path_unc X (r r' : relation X)
(A : r ⨾ r ≡ ∅₂)
(B : r' ⨾ r' ≡ ∅₂) :
(r ∪ r')* ≡
(r ⨾ r')* ∪ (r' ⨾ r)* ∪ r ⨾ (r' ⨾ r)* ∪ r' ⨾ (r ⨾ r')*.
Proof.
split.
eapply inclusion_rt_ind_left; eauto with hahn.
rewrite seq_union_l, !seq_union_r, <- !seqA, <- !ct_begin.
rewrite (seq_rtE_r r (r ⨾ r')), (seq_rtE_r r' (r' ⨾ r)), <- !seqA.
rewrite A, B, ?seq_false_l, ?union_false_l, ?union_false_r.
by unfold union, seq; red; ins; desf;
eauto 6 using clos_trans_in_rt, rt_refl.
hahn_rel;
repeat first [apply inclusion_union_l|apply inclusion_seq_rt|
eapply inclusion_rt_rt2]; vauto.
Qed.
Lemma pathp_unc X (r r' : relation X)
(A : r ⨾ r ≡ ∅₂)
(B : r' ⨾ r' ≡ ∅₂) :
(r ∪ r')⁺ ≡ (r ⨾ r')⁺ ∪ (r' ⨾ r)⁺ ∪ r ⨾ (r' ⨾ r)* ∪ r' ⨾ (r ⨾ r')*.
Proof.
rewrite ct_begin, path_unc; ins.
rewrite seq_union_l, !seq_union_r, <- !seqA, <- !ct_begin.
rewrite (seq_rtE_r r (seq r r')), (seq_rtE_r r' (seq r' r)), <- !seqA.
rewrite A, B, ?seq_false_l, ?union_false_l, ?union_false_r.
by unfold union, seq; split; red; ins; desf; eauto 8 using rt_refl.
Qed.
(** Paths with specific attributes *)
(******************************************************************************)
Lemma path_specific_absorb A (r r' : relation A) :
r ⨾ r' ⊆ r ⨾ r ->
r' ⨾ r' ⊆ r' ⨾ r ->
(r ∪ r')⁺ ⊆ r⁺ ∪ r' ⨾ r*.
Proof.
ins.
assert (r⁺ ⨾ r' ⊆ r⁺) by
(by rewrite ct_end, !seqA, H, <- seqA; rewrite rt_unit at 1).
apply inclusion_t_ind_right.
- (* base *)
unionL.
+ unionR left. apply ct_step.
+ unionR right; basic_solver 25.
- (* step *)
relsf; unionL.
+ (* r⁺ ; r *) by unionR left; rewrite ct_unit.
+ (* (r' ; r*) ; r *) by unionR right; rewrite !seqA, rt_unit.
+ (* r⁺ ; r' *) by unionR left; rewrite H1.
+ (* (r' ; r*) ; r' *)
rewrite rtE at 1; relsf; unionL; unionR right.
* by rewrite H0; arewrite (r ⊆ r*) at 1.
* by rewrite !seqA, H1, inclusion_t_rt.
Qed.
(** Paths involving [bunion] *)
(******************************************************************************)
Lemma pow_union_decomposition (n : nat) A (r r': relation A) :
(r ∪ r')^^n ⊆ r'^^n ∪ (⋃k < n, r'^^k ⨾ r ⨾ (r ∪ r')^^(n - k - 1)).
Proof.
induction n using (well_founded_ind Wf_nat.lt_wf).
destruct n as [| n']; [by firstorder|].
simpl (_ ^^ (S n')).
rewrite !seq_pow_l, H; clear H; try done.
autorewrite with hahn; autorewrite with hahn hahn_full.
unionL; eauto with hahn.
- unionR right; eapply inclusion_bunion_r with 0; ins; try lia; rels.
replace (n' - 0) with n' by lia; eauto with hahn.
- unionR right; eapply inclusion_bunion_r with 0; ins; try lia; rels.
hahn_frame_l.
arewrite (r ⊆ (r ∪ r') ^^ 1) at 1 by simpl; rels.
arewrite (r' ⊆ r ∪ r') at 1; rewrite !pow_nm.
replace (x + (1 + (n' - x - 1))) with (n' - 0) by lia; rels.
- unionR right; eapply inclusion_bunion_r with (S x); ins; try lia; rels.
by rewrite seq_pow_l, !seqA.
Qed.
Lemma ct_inclusion_from_rt_inclusion1 A (r r': relation A)
(d d' : A -> Prop) (ACYC : acyclic r) :
r* ⨾ ⦗d⦘ ⊆ ⦗d'⦘ ⨾ r'* -> r⁺ ⨾ ⦗d⦘ ⊆ ⦗d'⦘ ⨾ r'⁺.
Proof.
rewrite !rtE; autounfold with unfolderDb; ins; desf.
specialize (H x y); desf.
assert (d' x /\ (x = y /\ True \/ r'⁺ x y)).
{ edestruct H; eauto. desf; eauto. }
desf; eauto.
exfalso; eapply ACYC; edone.
Qed.
Lemma ct_inclusion_from_rt_inclusion2 A (r r': relation A)
(d d' : A -> Prop) (ACYC : acyclic r) :
⦗d⦘ ⨾ r* ⊆ r'* ⨾ ⦗d'⦘ -> ⦗d⦘ ⨾ r⁺ ⊆ r'⁺ ⨾ ⦗d'⦘.
Proof.
rewrite !rtE; autounfold with unfolderDb; ins; desf.
specialize (H z y); desf.
assert (d' y /\ (z = y /\ True \/ r'⁺ z y)).
{ edestruct H; eauto. desf; eauto. }
desf; eauto.
exfalso; eapply ACYC; edone.
Qed.