-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_all.py
310 lines (275 loc) · 10.7 KB
/
train_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import argparse
import collections
import random
import sys
from pathlib import Path
import numpy as np
import PIL
import torch
import torchvision
from sconf import Config
from prettytable import PrettyTable
from domainbed.datasets import get_dataset
from domainbed import hparams_registry
from domainbed.lib import misc
from domainbed.lib.writers import get_writer
from domainbed.lib.logger import Logger
from domainbed.trainer import train
def str2bool(string):
if string == "True":
return True
else:
return False
def main():
parser = argparse.ArgumentParser(
description="Domain generalization", allow_abbrev=False
)
parser.add_argument("name", type=str)
parser.add_argument("configs", nargs="*")
parser.add_argument("--data_dir", type=str, default="datadir/")
parser.add_argument("--dataset", type=str, default="PACS")
parser.add_argument("--algorithm", type=str, default="ERM")
parser.add_argument(
"--trial_seed",
type=int,
default=0,
help="Trial number (used for seeding split_dataset and random_hparams).",
)
parser.add_argument(
"--hparams_seed",
type=int,
default=0,
help="Hparams seed number (used for seeding split_dataset and random_hparams).",
)
parser.add_argument("--seed", type=int, default=0, help="Seed for everything else")
parser.add_argument(
"--steps",
type=int,
default=None,
help="Number of steps. Default is dataset-dependent.",
)
parser.add_argument(
"--checkpoint_freq",
type=int,
default=None,
help="Checkpoint every N steps. Default is dataset-dependent.",
)
parser.add_argument("--test_envs", type=int, nargs="+", default=None)
parser.add_argument("--holdout_fraction", type=float, default=0.2)
parser.add_argument(
"--model_save", default=None, type=int, help="Model save start step"
)
parser.add_argument("--tb_freq", default=10)
parser.add_argument("--debug", action="store_true", help="Run w/ debug mode")
parser.add_argument(
"--show", action="store_true", help="Show args and hparams w/o run"
)
parser.add_argument(
"--evalmode",
default="fast",
help="[fast, all]. if fast, ignore train_in datasets in evaluation time.",
)
parser.add_argument(
"--prebuild_loader", action="store_true", help="Pre-build eval loaders"
)
# [#] our args
parser.add_argument("--lmd", type=float, default=0.5)
parser.add_argument("--tmp", type=float, default=0.1)
parser.add_argument("--clip_backbone", type=str, default="")
parser.add_argument("--backbone", type=str, default="") #vit-base
parser.add_argument("--prompt_style", type=int, default=2)
parser.add_argument("--pretrained", default=None, type=str)
parser.add_argument("--sweep", type=str, default="", help="Hparam Sweep")
parser.add_argument("--output_dir", default=None, type=str)
parser.add_argument("--miro_swad", default=None, type=str)
parser.add_argument("--hpt_st", type=int, default=0)
parser.add_argument("--cls_pth", type=str, default="")
parser.add_argument("--check_acc", action="store_true")
parser.add_argument("--open_set", action="store_true")
parser.add_argument("--model_load", type=int, default=0)
parser.add_argument("--swad_fix", action="store_false")
parser.add_argument("--addn_proj", default="False", type=str)
# [#] cutmix args
parser.add_argument("--beta", type=float, default=0.0)
parser.add_argument("--cutmix_prob", type=float, default=0.0)
args, left_argv = parser.parse_known_args()
args.deterministic = True
# setup hparams
# hparams = hparams_registry.default_hparams(args.algorithm, args.dataset)
if args.hpt_st == 0:
hparams = hparams_registry.default_hparams(args.algorithm, args.dataset)
elif args.hpt_st == 1:
print("HP Tuning strategy 1 .....")
hparams = hparams_registry.random_hparams(
args.algorithm,
args.dataset,
misc.seed_hash(args.hparams_seed, args.trial_seed),
)
else:
print("HP Tuning strategy 2 .....")
hparams = hparams_registry.random_hparams_st2(
args.algorithm,
args.dataset,
misc.seed_hash(args.hparams_seed, args.trial_seed),
)
keys = ["config.yaml"] + args.configs
keys = [open(key, encoding="utf8") for key in keys]
hparams = Config(*keys, default=hparams)
hparams.argv_update(left_argv)
# setup debug
if args.debug:
args.checkpoint_freq = 5
args.steps = 10
args.name += "_debug"
timestamp = misc.timestamp()
args.unique_name = args.name
args.unique_name = f"{timestamp}_{args.name}"
# [#] Our args
hparams["prompt_style"] = args.prompt_style
hparams["pretrained"] = args.pretrained
hparams["cutmix_prob"] = args.cutmix_prob
hparams["addn_proj"] = str2bool(args.addn_proj)
if args.test_envs is not None:
args.test_envs = [[env] for env in args.test_envs]
if args.dataset == "DomainNet":
hparams["test_batchsize"] = 64
# hparams["beta"] = args.beta
hparams["lmd"] = args.lmd
hparams["cls_pth"] = args.cls_pth
hparams["tmp"] = args.tmp
hparams["backbone"] = args.backbone
if args.clip_backbone != "":
hparams["clip_backbone"] = args.clip_backbone
else:
hparams["clip_backbone"] = "ViT-B/16"
# path setup
args.work_dir = Path(".")
args.data_dir = Path(args.data_dir)
if args.sweep == "":
args.out_root = args.work_dir / Path("train_output") / args.dataset
args.out_dir = args.out_root / args.unique_name
args.out_dir.mkdir(exist_ok=True, parents=True)
logger = Logger.get(args.out_dir / "log.txt")
else:
print("Creating sweep directory ...")
args.out_dir = Path(args.output_dir)
args.out_dir.mkdir(exist_ok=True, parents=True)
logger = Logger.get(args.out_dir / "log.txt")
# writer = get_writer(args.out_root / "runs" / args.unique_name)
if args.debug:
logger.setLevel("DEBUG")
cmd = " ".join(sys.argv)
logger.info(f"Command :: {cmd}")
logger.nofmt("Environment:")
logger.nofmt("\tPython: {}".format(sys.version.split(" ")[0]))
logger.nofmt("\tPyTorch: {}".format(torch.__version__))
logger.nofmt("\tTorchvision: {}".format(torchvision.__version__))
logger.nofmt("\tCUDA: {}".format(torch.version.cuda))
logger.nofmt("\tCUDNN: {}".format(torch.backends.cudnn.version()))
logger.nofmt("\tNumPy: {}".format(np.__version__))
logger.nofmt("\tPIL: {}".format(PIL.__version__))
# Different to DomainBed, we support CUDA only.
assert torch.cuda.is_available(), "CUDA is not available"
logger.nofmt("Args:")
for k, v in sorted(vars(args).items()):
logger.nofmt("\t{}: {}".format(k, v))
logger.nofmt("HParams:")
for line in hparams.dumps().split("\n"):
logger.nofmt("\t" + line)
if args.show:
exit()
# seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.deterministic
torch.backends.cudnn.benchmark = not args.deterministic
# Dummy datasets for logging information.
# Real dataset will be re-assigned in train function.
# test_envs only decide transforms; simply set to zero.
dataset, _in_splits, _out_splits = get_dataset([0], args, hparams)
# print dataset information
logger.nofmt("Dataset:")
logger.nofmt(
f"\t[{args.dataset}] #envs={len(dataset)}, #classes={dataset.num_classes}"
)
for i, env_property in enumerate(dataset.environments):
logger.nofmt(f"\tenv{i}: {env_property} (#{len(dataset[i])})")
logger.nofmt("")
n_steps = args.steps or dataset.N_STEPS
checkpoint_freq = args.checkpoint_freq or dataset.CHECKPOINT_FREQ
logger.info(f"n_steps = {n_steps}")
logger.info(f"checkpoint_freq = {checkpoint_freq}")
org_n_steps = n_steps
n_steps = (n_steps // checkpoint_freq) * checkpoint_freq + 1
logger.info(f"n_steps is updated to {org_n_steps} => {n_steps} for checkpointing")
if not args.test_envs:
args.test_envs = [[te] for te in range(len(dataset))]
logger.info(f"Target test envs = {args.test_envs}")
###########################################################################
# Run
###########################################################################
all_records = []
results = collections.defaultdict(list)
if args.check_acc:
for test_env in args.test_envs:
dom_name = dataset.environments[int(test_env[0])]
result = train(
test_env,
args=args,
hparams=hparams,
n_steps=n_steps,
checkpoint_freq=checkpoint_freq,
logger=logger,
writer=None,
)
if args.cls_pth != "":
all_records.append((dom_name, result[1]["test_in"]))
else:
all_records.append((dom_name, result))
if args.cls_pth != "":
columns = ["Acc. Table"] + dataset.environments
acc_table = PrettyTable(columns)
row = ["Avg. Cls"]
for i in range(len(all_records)):
name, acc_val = all_records[i]
row += [f"{acc_val * 100:.2f}"]
acc_table.add_row(row)
else:
columns = ["Domain"] + hparams["class_names"]
acc_table = PrettyTable(columns)
for i in range(len(all_records)):
name, acc_dict = all_records[i]
row = [name] + [f"{acc.item() * 100:.2f}" for acc in list(acc_dict.values())]
acc_table.add_row(row)
print(acc_table)
exit()
for test_env in args.test_envs:
res, records = train(
test_env,
args=args,
hparams=hparams,
n_steps=n_steps,
checkpoint_freq=checkpoint_freq,
logger=logger,
writer=None,
)
all_records.append(records)
for k, v in res.items():
results[k].append(v)
# log summary table
logger.info("=== Summary ===")
logger.info(f"Command: {' '.join(sys.argv)}")
logger.info("Unique name: %s" % args.unique_name)
logger.info("Out path: %s" % args.out_dir)
logger.info("Algorithm: %s" % args.algorithm)
logger.info("Dataset: %s" % args.dataset)
table = PrettyTable(["Selection"] + dataset.environments + ["Avg."])
for key, row in results.items():
row.append(np.mean(row))
row = [f"{acc:.3%}" for acc in row]
table.add_row([key] + row)
logger.nofmt(table)
if __name__ == "__main__":
main()