-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·276 lines (234 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import datasets
import errno
import models
import torch
import train_test
import active_learning as al
from visualize import new_TSNE, analyze
import os
from datetime import datetime
import numpy as np
import torch.optim as optim
import wandb
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
CURRENT_DIR_PATH = os.path.dirname(os.path.realpath(__file__))
MODEL_CHECKPOINTS = CURRENT_DIR_PATH + '/models/models_checkpoints/'
# dd/mm/YY H:M:S
time_stamp = datetime.now().strftime("%d%m%Y_%H%M%S")
def make_args_parser():
# create an ArgumentParser object
parser = argparse.ArgumentParser(
description='Active Domain Adaptation via S3VAADA')
# fill parser with information about program arguments
parser.add_argument('-s', '--source', default='webcam', type=str,
help='Define the source domain')
parser.add_argument('-t', '--target', default='amazon', type=str,
help='Define the target domain')
parser.add_argument('-m', '--model', default='ResNet', type=str,
help='Define the architecture')
parser.add_argument('-bs', '--batch_size', default=36, type=int,
help='Batch Size')
parser.add_argument('-c', '--cycles', default=6, type=int,
help='Number of Cycles')
parser.add_argument('-e', '--epochs', default=100, type=int,
help='Number of Epochs')
parser.add_argument('-k', '--learning_rate', default=1e-2, type=float,
help='Learning rate')
parser.add_argument('-w', '--workers', default=4, type=int,
help='Number of workers')
parser.add_argument('-al', '--sampling', default='s3vaada', type=str,
help='Sampling Strategy for active learning')
parser.add_argument('-im', '--image_size', default=224, type=int,
help='Image Size')
parser.add_argument('-mo', '--momentum', default=0.9, type=float,
help='Momentum')
parser.add_argument('-wd', '--weight_decay', default=0.0005, type=float,
help='weight decay for SGD')
parser.add_argument('-se', '--seed', default=123, type=int,
help='Seed for the run')
parser.add_argument('-met', '--method', default="vaada", type=str,
help='Method : dann or vaada')
parser.add_argument('-clip', '--clip_value', default=1, type=float,
help='Clip value for max norm')
parser.add_argument('-g', '--gamma', default=10, type=float,
help='Gamma value in the schedule (as defined in DANN)')
parser.add_argument('-log', '--log_interval', default=50, type=int,
help='Log interval for wandb')
parser.add_argument('-na', '--name', default="test", type=str,
help='Wandb name run')
parser.add_argument('-amp', '--use_amp', default=True, type=bool,
help='Mixed Precision Training')
parser.add_argument('-logr', '--log_results', default=True, type=bool,
help='To log results or not')
parser.add_argument('-gid', '--gpu', default=1, type=int,
help='GPU to use')
parser.add_argument('-a', '--alpha', default=0.5, type=float,
help="alpha value for submodular function")
parser.add_argument('-b', '--beta', default=0.3, type=float,
help="beta value for submodular function")
parser.add_argument('-r', '--resume', default="", type=str,
help="Resume from checkpoint")
parser.add_argument('-bud', '--budget', default=None, type=int,
help='Budget to use')
return parser.parse_args()
def print_args(args):
print("Running with the following configuration")
args_map = vars(args)
for key in args_map:
print('\t', key, '-->', args_map[key])
print()
def main():
# parse and print arguments
args = make_args_parser()
print_args(args)
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# Check device available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Running on: {}".format(device))
# Seed Everything
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
# Timestamp
args.time_stamp = time_stamp
# Load both source and target domain datasets
source_dataloader, source_dataset = datasets.get_source_domain(
args.source, args)
source_test_dataloader, _ = datasets.get_source_domain(
args.source, args, train=False)
(target_dataset, target_dataloader), (test_dataset,
target_test_dataloader) = datasets.get_target_domain(args.target, args)
# Set Budget as 2% of the number of samples in the target dataset
if args.budget is None:
args.budget = int(len(target_dataset)*0.02)
print("Budget for every cycle : ", args.budget)
# Create directory to save model's checkpoints
try:
model_root = MODEL_CHECKPOINTS + args.source + '-' + \
args.target + "/" + args.sampling + "/" + args.time_stamp + "/"
print("Model saved at = ", model_root)
os.makedirs(model_root)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# Intialize Wandb
if args.log_results:
wandb.init(project="active-learning",
entity="active-learning", name=args.name)
wandb.config.update(args)
wandb.config.update({"Optimizer": "SGD"})
# Initialize model
net = models.ResNet(args.num_classes, device, args)
param_dict = torch.load('models/resnet50.pth')
models.load_single_state_dict(net, param_dict)
net = net.to(device)
domain_loss = torch.nn.CrossEntropyLoss()
class_loss = torch.nn.CrossEntropyLoss()
if args.log_results:
wandb.watch(net)
torch.save(net.state_dict(), model_root + "/" + args.name + ".pth")
cycle_no = 0
if args.resume:
last_cycle_weight = sorted([x for x in os.listdir(args.resume) if x.endswith(
".pth") and len(x.strip(".pth")) < 3], key=lambda x: (len(x), x))[-2]
print("Resuming from checkpoint:", last_cycle_weight)
net.load_state_dict(torch.load(
os.path.join(args.resume, last_cycle_weight)))
cycle_no = last_cycle_weight.strip(".pth") # [0]
all_idx = np.array([])
for i in range(int(cycle_no)+1):
idx = np.load(os.path.join(args.resume, str(i)+".npy"))
all_idx = np.concatenate((all_idx, idx))
all_idx = all_idx.astype(int)
all_idx = torch.from_numpy(all_idx)
all_indices = torch.arange(0, len(target_dataset))
new_data_set = torch.utils.data.Subset(target_dataset, all_idx)
target_dataset = torch.utils.data.Subset(target_dataset, torch.from_numpy(
np.setdiff1d(all_indices.numpy(), all_idx.numpy())))
target_dataloader = DataLoader(
dataset=target_dataset,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=True
)
new_data_loader = DataLoader(
dataset=new_data_set,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=True
)
print("Number of labeled target samples:", len(all_idx))
cycle_no = int(cycle_no)+1
print("Number of classes: ", args.num_classes)
print("Number of images in the target dataset : ", len(target_dataset))
print("Number of images in the source dataset : ", len(source_dataset))
new_data_loader = None
for cycle in range(cycle_no, args.cycles):
print('Cycle: ', cycle+1)
if args.log_results:
wandb.log({"Cycle": cycle+1})
# Load the original ResNet-50 weights
net.load_state_dict(torch.load(model_root + "/" + args.name + ".pth"))
dc_optimizer = optim.SGD(net.domain_classifier.parameters(
), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
if args.method == "dann":
fg_optimizer = optim.SGD(net.feature_extractor.parameters(
), lr=args.learning_rate/10, momentum=args.momentum, weight_decay=args.weight_decay)
else:
fg_optimizer = optim.SGD(net.feature_extractor.parameters(
), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
fc_optimizer = optim.SGD(net.feature_classifier.parameters(
), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
train_test.train(net, class_loss, domain_loss, source_dataloader,
target_dataloader, new_data_loader, source_test_dataloader, target_test_dataloader,
(fg_optimizer, fc_optimizer, dc_optimizer),
cycle, model_root, args, device)
# To sample the images from the unlabeled target dataset
unshuffled_dataloader = DataLoader(
dataset=target_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=False
)
len_data_loader = len(unshuffled_dataloader.dataset)
all_indices = torch.arange(0, len_data_loader)
idx = al.get_active_learning_method(
net, unshuffled_dataloader, device, args, source_dataloader, cycle, new_data_loader)
# Displays which classes the selected samples belong to
analyze(idx, target_dataset, net, args, device)
temp_dataset = torch.utils.data.Subset(target_dataset, idx)
temp_dataloader = DataLoader(
dataset=temp_dataset,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=False
)
# Visualize
new_TSNE(net, source_dataloader, target_dataloader,
new_data_loader, temp_dataloader, cycle, device, args)
if new_data_loader is None:
new_data_set = torch.utils.data.Subset(target_dataset, idx)
else:
new_data_set = torch.utils.data.ConcatDataset(
[new_data_set, torch.utils.data.Subset(target_dataset, idx)])
# Remove the labeled images from the target dataset
target_dataset = torch.utils.data.Subset(target_dataset, torch.from_numpy(
np.setdiff1d(all_indices.numpy(), idx.numpy())))
target_dataloader = DataLoader(
dataset=target_dataset,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=True
)
# new_data_loader contains the labeled target images
new_data_loader = DataLoader(
dataset=new_data_set,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=True
)
np.save(model_root+str(cycle)+".npy", idx)
if __name__ == '__main__':
main()