-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathspline_models.py
663 lines (536 loc) · 29.6 KB
/
spline_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import torch
from torch import nn
import torch.nn.functional as F
from get_param import toCuda,toCpu
from operators import rot,grad,div
from unet_parts import *
import numpy as np
import os,pickle
def get_Net(params):
if params.net == "Fluid_model":
net = fluid_model(orders_v=[params.orders_v,params.orders_v],orders_p=[params.orders_p,params.orders_p],hidden_size=params.hidden_size,input_size=3)
elif params.net == "Wave_model":
params.orders_p = params.orders_v = params.orders_z
net = wave_model(orders_v=[params.orders_v,params.orders_v],orders_p=[params.orders_p,params.orders_p],hidden_size=params.hidden_size,input_size=2,residuals=True)
return net
class fluid_model(nn.Module):
# inspired by UNet taken from: https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
def __init__(self, orders_v,orders_p,hidden_size=64,interpolation_size=5, bilinear=True,input_size=3,residuals=False):
"""
:orders_v: order of spline for velocity potential (should be at least 2)
:orders_p: order of spline for pressure field
:hidden_size: hidden size of neural net
:interpolation_size: size of first interpolation layer for v_cond and v_mask
"""
super(fluid_model, self).__init__()
self.hidden_size = hidden_size
self.bilinear = bilinear
self.input_size = input_size
self.orders_v = orders_v
self.orders_p = orders_p
self.v_size = np.prod([i+1 for i in orders_v])
self.p_size = np.prod([i+1 for i in orders_p])
self.hidden_state_size = self.v_size + self.p_size
self.residuals = residuals
self.interpol = nn.Conv2d(input_size,interpolation_size,kernel_size=2) # interpolate v_cond (2) and v_mask (1) from 4 surrounding fields
self.inc = DoubleConv(self.hidden_state_size+interpolation_size, hidden_size) # input: hidden_state + interpolation of v_cond and v_mask
self.down1 = Down(hidden_size, 2*hidden_size)
self.down2 = Down(2*hidden_size, 4*hidden_size)
self.down3 = Down(4*hidden_size, 8*hidden_size)
factor = 2 if bilinear else 1
self.down4 = Down(8*hidden_size, 16*hidden_size // factor)
self.up1 = Up(16*hidden_size, 8*hidden_size // factor, bilinear)
self.up2 = Up(8*hidden_size, 4*hidden_size // factor, bilinear)
self.up3 = Up(4*hidden_size, 2*hidden_size // factor, bilinear)
self.up4 = Up(2*hidden_size, hidden_size, bilinear)
self.outc = OutConv(hidden_size, self.hidden_state_size)
self.output_scaler = toCuda(torch.ones(1,self.v_size+self.p_size,1,1)*2)
self.output_scaler[:,0:1,:,:] = 400
self.output_scaler[:,(self.v_size):(self.v_size+1),:,:] = 400
def forward(self,hidden_state,v_cond,v_mask):
"""
:hidden_state: old hidden state of size: bs x hidden_state_size x (w-1) x (h-1)
:v_cond: velocity (dirichlet) conditions on boundaries (average value within cell): bs x 2 x w x h
:v_mask: mask for boundary conditions (average value within cell): bs x 1 x w x h
:return: new hidden state of size: bs x hidden_state_size x (w-1) x (h-1)
"""
x = torch.cat([v_cond,v_mask],dim=1)
x = self.interpol(x)
x = torch.cat([hidden_state,x],dim=1)
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
x = self.outc(x)
out = x
# residual connections
out[:,:,:,:] = self.output_scaler*torch.tanh((out[:,:,:,:]+hidden_state[:,:,:,:])/self.output_scaler)
#substract mean of a_z and p
out[:,0:1,:,:] = out[:,0:1,:,:]-torch.mean(out[:,0:1,:,:],dim=(2,3)).unsqueeze(2).unsqueeze(3)
out[:,(self.v_size):(self.v_size+1),:,:] = out[:,(self.v_size):(self.v_size+1),:,:]-torch.mean(out[:,(self.v_size):(self.v_size+1),:,:],dim=(2,3)).unsqueeze(2).unsqueeze(3)
return out
class wave_model(nn.Module):
def __init__(self, orders_v,orders_p,hidden_size=64,interpolation_size=5, bilinear=True,input_size=3,residuals=False):
"""
:orders_v: order of spline for velocity potential (should be at least 2)
:orders_p: order of spline for pressure field
:hidden_size: hidden size of neural net
:interpolation_size: size of first interpolation layer for v_cond and v_mask
"""
super(wave_model, self).__init__()
self.hidden_size = hidden_size
self.bilinear = bilinear
self.input_size = input_size
self.orders_v = orders_v
self.orders_p = orders_p
self.v_size = np.prod([i+1 for i in orders_v])
self.p_size = np.prod([i+1 for i in orders_p])
self.hidden_state_size = self.v_size + self.p_size
self.residuals = residuals
self.interpol = nn.Conv2d(input_size,interpolation_size,kernel_size=2) # interpolate v_cond (2) and v_mask (1) from 4 surrounding fields
self.conv1 = nn.Conv2d(self.hidden_state_size+interpolation_size, self.hidden_size,kernel_size=3,padding=1) # input: hidden_state + interpolation of v_cond and v_mask
self.conv2 = nn.Conv2d(self.hidden_size, self.hidden_size,kernel_size=3,padding=1) # input: hidden_state + interpolation of v_cond and v_mask
self.conv3 = nn.Conv2d(self.hidden_size, self.hidden_state_size,kernel_size=3,padding=1) # input: hidden_state + interpolation of v_cond and v_mask
if self.hidden_state_size == 18: # if orders_z = 2
self.output_scaler_wave = toCuda(torch.Tensor([5,0.5,0.05,0.5, 0.05,0.05,0.05,0.05,0.05, 5,0.5,0.05,0.5, 0.05,0.05,0.05,0.05,0.05]).unsqueeze(0).unsqueeze(2).unsqueeze(3))
elif self.hidden_state_size == 8: # if orders_z = 1
self.output_scaler_wave = toCuda(torch.Tensor([5,0.5,0.5,0.05, 5,0.5,0.5,0.05]).unsqueeze(0).unsqueeze(2).unsqueeze(3))
def forward(self,hidden_state,v_cond,v_mask):
"""
:hidden_state: old hidden state of size: bs x hidden_state_size x (w-1) x (h-1)
:v_cond: velocity (dirichlet) conditions on boundaries (average value within cell): bs x 2 x w x h
:v_mask: mask for boundary conditions (average value within cell): bs x 1 x w x h
:return: new hidden state of size: bs x hidden_state_size x (w-1) x (h-1)
"""
x = torch.cat([v_cond,v_mask],dim=1)
x = self.interpol(x)
x = torch.cat([hidden_state,x],dim=1)
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
out = self.conv3(x)
# residual connections
out[:,:,:,:] = self.output_scaler_wave*torch.tanh((out[:,:,:,:]+hidden_state[:,:,:,:]/self.output_scaler_wave))
return out
def sign(x):
s = torch.sign(x)
s[s==0]=1
return s
def heaviside(x):
return (torch.sign(x)+1)/2
# 1st order splines
def p1_1(offsets):
offsets = offsets*sign(offsets)
return (1-offsets)
p1 = [p1_1] # list of 1st order basis splines
# 2nd order splines
def p2_1(offsets):
offsets = offsets*sign(offsets)
return (1-offsets)**2*(1+2*offsets)
def p2_2(offsets):
abs_offsets = offsets*sign(offsets)
return sign(offsets)*(1-abs_offsets)**2*(abs_offsets)
# derivatives
def dp2_1(offsets):#first derivative (needs to be devided by dt)
abs_offsets = offsets*sign(offsets)
return sign(offsets)*(6*abs_offsets**2-6*abs_offsets)
def dp2_2(offsets):
abs_offsets = offsets*sign(offsets)
return 3*abs_offsets**2 - 4*abs_offsets + 1
def d2p2_1(offsets):#2nd derivative (needs to be devided by dt**2)
abs_offsets = offsets*sign(offsets)
return 12*abs_offsets - 6
def d2p2_2(offsets):
abs_offsets = offsets*sign(offsets)
return sign(offsets)*(6*abs_offsets-4)
p2 = [p2_1,p2_2] # list of 2nd order basis splines
# 3rd order splines
def p3_1(offsets):
offsets = offsets*sign(offsets)
return (1-offsets)**3*(1+3*offsets+6*offsets**2)
def p3_2(offsets):
abs_offsets = offsets*sign(offsets)
return sign(offsets)*(1-abs_offsets)**3*(abs_offsets+3*abs_offsets**2)*2
def p3_3(offsets):
offsets = offsets*sign(offsets)
return (1-offsets)**3*(0.5*offsets**2)*16
p3 = [p3_1,p3_2,p3_3] # list of 3rd order basis splines
# 4th order splines
def p4_1(offsets):
return (offsets-1)**4*(1+4*offsets+10*offsets**2+20*offsets**3)*heaviside(offsets)+(-offsets-1)**4*(1-4*offsets+10*offsets**2-20*offsets**3)*heaviside(-offsets)
def p4_2(offsets):
return ((offsets-1)**4*(1*offsets+4*offsets**2+10*offsets**3)*heaviside(offsets)+(-offsets-1)**4*(1*offsets-4*offsets**2+10*offsets**3)*heaviside(-offsets))*4
def p4_3(offsets):
return ((offsets-1)**4*(0.5*offsets**2+2*offsets**3)*heaviside(offsets)+(-offsets-1)**4*(0.5*offsets**2-2*offsets**3)*heaviside(-offsets))*32
def p4_4(offsets):
return ((offsets-1)**4*(1.0/6.0*offsets**3)*heaviside(offsets)+(-offsets-1)**4*(1.0/6.0*offsets**3)*heaviside(-offsets))*512
p4 = [p4_1,p4_2,p4_3,p4_4]
# 5th order splines
def p5_1(offsets):
return ((offsets-1)**5*(-1-5*offsets-15*offsets**2-35*offsets**3-70*offsets**4)*heaviside(offsets)+(-offsets-1)**5*(-1+5*offsets-15*offsets**2+35*offsets**3-70*offsets**4)*heaviside(-offsets))
def p5_2(offsets):
return ((offsets-1)**5*(-1*offsets-5*offsets**2-15*offsets**3-35*offsets**4)*heaviside(offsets)+(-offsets-1)**5*(-1*offsets+5*offsets**2-15*offsets**3+35*offsets**4)*heaviside(-offsets))*4
def p5_3(offsets):
return ((offsets-1)**5*(-0.5*offsets**2-2.5*offsets**3-7.5*offsets**4)*heaviside(offsets)+(-offsets-1)**5*(-0.5*offsets**2+2.5*offsets**3-7.5*offsets**4)*heaviside(-offsets))*32
def p5_4(offsets):
return ((offsets-1)**5*(-0.5/3.0*offsets**3-2.5/3.0*offsets**4)*heaviside(offsets)+(-offsets-1)**5*(-0.5/3.0*offsets**3+2.5/3.0*offsets**4)*heaviside(-offsets))*512
def p5_5(offsets):
return ((offsets-1)**5*(-2.5/6.0*offsets**4)*heaviside(offsets)+(-offsets-1)**5*(-2.5/6.0*offsets**4)*heaviside(-offsets))*1024
p5 = [p5_1,p5_2,p5_3,p5_4,p5_5]
pi = [p1,p2,p3,p4,p5] # list of lists of basis splines for different orders
def p_multidim(offsets,orders,indices):
"""
multidimensional basis spline of specified orders and indices
:offsets: offsets of size: bs x n_dims x ...
:orders: orders of spline for each dimension (note: counting starts at 0 => 0 ~ 1st order, 1 ~ 2nd order, 2 ~ 3rd order)
:indices: indices of spline for each dimension (note: counting starts at 0)
"""
return torch.prod(torch.cat([pi[orders[i]][indices[i]](offsets[:,i:(i+1)]).unsqueeze(0) for i in range(len(orders))]),dim=0)
# buffering interpolation kernels significantly speeds up computations
offset_summary = toCuda(torch.tensor([[[0,0],[1,0]],[[0,1],[1,1]]]).unsqueeze(0).permute(0,3,2,1))
kernel_buffer_velocity = {}
kernel_buffer_velocity_superres = {}
kernel_buffer_pressure = {}
kernel_buffer_pressure_superres = {}
kernel_buffer_wave = {}
kernel_buffer_wave_superres = {}
def save_buffers():
os.makedirs('Logger/buffers',exist_ok=True)
path = 'Logger/buffers/buffers.dic'
with open(path,"wb") as f:
pickle.dump({"vel":kernel_buffer_velocity,"vel_superres":kernel_buffer_velocity_superres,"pres":kernel_buffer_pressure,"pres_superres":kernel_buffer_pressure_superres,"wave":kernel_buffer_wave,"wave_superres":kernel_buffer_wave_superres},f)
def load_buffers():
global kernel_buffer_velocity,kernel_buffer_velocity_superres,kernel_buffer_pressure,kernel_buffer_pressure_superres,kernel_buffer_wave,kernel_buffer_wave_superres
path = 'Logger/buffers/buffers.dic'
with open(path,"rb") as f:
buffers = pickle.load(f)
kernel_buffer_velocity = buffers["vel"]
kernel_buffer_velocity_superres = buffers["vel_superres"]
kernel_buffer_pressure = buffers["pres"]
kernel_buffer_pressure_superres = buffers["pres_superres"]
kernel_buffer_wave = buffers["wave"]
kernel_buffer_wave_superres = buffers["wave_superres"]
try:
load_buffers()
print("loaded buffers")
except:
print("no buffers available")
# interpolate hidden_states
def interpolate_states(old_hidden_states,new_hidden_states,offset,dt=1,orders_v=[2,2],orders_p=[0,0]):
"""
:old_hidden_states: old hidden states (size: bs x (v_size+p_size) x w x h)
:new_hidden_states: new hidden states (size: bs x (v_size+p_size) x w x h)
:offset: offset in x / y / t direction (vector of size 3 containing values between 0 and 1)
:dt: delta time between old and new hidden states
:orders_v: spline orders for vector potential of velocity field in x and y direction
:orders_p: spline orders for pressure field in x and y direction
:return: interpolated fields for:
:a_z: vector potential
:v: veloctiy field
:dv_dt: time derivative of velocity field
:grad_v: gradient of velocity field
:laplace_v: laplacian of velocity field
:p: pressure field
:grad_p: gradient of pressure field
"""
v_size = np.prod([i+1 for i in orders_v])
old_a_z,old_v,old_grad_v,old_laplace_v = interpolate_2d_velocity(old_hidden_states[:,:v_size],offset[0:2],orders_v)
new_a_z,new_v,new_grad_v,new_laplace_v = interpolate_2d_velocity(new_hidden_states[:,:v_size],offset[0:2],orders_v)
old_p,old_grad_p = interpolate_2d_pressure(old_hidden_states[:,v_size:],offset[0:2],orders_p)
new_p,new_grad_p = interpolate_2d_pressure(new_hidden_states[:,v_size:],offset[0:2],orders_p)
# time is interpolated linearly
a_z = (1-offset[2])*old_a_z + offset[2]*new_a_z
v = (1-offset[2])*old_v + offset[2]*new_v
grad_v = (1-offset[2])*old_grad_v + offset[2]*new_grad_v
laplace_v = (1-offset[2])*old_laplace_v + offset[2]*new_laplace_v
p = (1-offset[2])*old_p + offset[2]*new_p
grad_p = (1-offset[2])*old_grad_p + offset[2]*new_grad_p
dv_dt = (new_v - old_v)/dt
return a_z,v,dv_dt,grad_v,laplace_v,p,grad_p
# interpolate hidden_states for wave equation (second order spline in time)
def interpolate_wave_states(old_hidden_states,new_hidden_states,offset,dt=1,orders_z=[1,1]):
"""
:old_hidden_states: old hidden states (size: bs x (v_size+p_size) x w x h)
:new_hidden_states: new hidden states (size: bs x (v_size+p_size) x w x h)
:offset: offset in x / y / t direction (vector of size 3 containing values between 0 and 1)
:dt: delta time between old and new hidden states
:orders_z: spline orders for z values of membrane in x and y direction
:return: interpolated fields for:
:z: z field
:grad(z): gradient of z field
:laplace(z): laplacian of z field
:dz/dt: velocity of z field
:dz^2/dt^2: acceleration of z field
"""
z_size = np.prod([i+1 for i in orders_z])
# first order in time
old_z1,old_grad_z1,old_laplace_z1 = interpolate_2d_wave(old_hidden_states[:,:z_size],offset[0:2],orders_z)
new_z1,new_grad_z1,new_laplace_z1 = interpolate_2d_wave(new_hidden_states[:,:z_size],offset[0:2],orders_z)
# second order in time
old_z2,old_grad_z2,old_laplace_z2 = interpolate_2d_wave(old_hidden_states[:,z_size:],offset[0:2],orders_z)
new_z2,new_grad_z2,new_laplace_z2 = interpolate_2d_wave(new_hidden_states[:,z_size:],offset[0:2],orders_z)
# 2nd order interpolation of time
z = p2_1(offset[2])*old_z1 + p2_1(offset[2]-1)*new_z1 + p2_2(offset[2])*old_z2 + p2_2(offset[2]-1)*new_z2
grad_z = p2_1(offset[2])*old_grad_z1 + p2_1(offset[2]-1)*new_grad_z1 + p2_2(offset[2])*old_grad_z2 + p2_2(offset[2]-1)*new_grad_z2
laplace_z = p2_1(offset[2])*old_laplace_z1 + p2_1(offset[2]-1)*new_laplace_z1 + p2_2(offset[2])*old_laplace_z2 + p2_2(offset[2]-1)*new_laplace_z2
v = (dp2_1(offset[2])*old_z1 + dp2_1(offset[2]-1)*new_z1 + dp2_2(offset[2])*old_z2 + dp2_2(offset[2]-1)*new_z2)/dt
a = (d2p2_1(offset[2])*old_z1 + d2p2_1(offset[2]-1)*new_z1 + d2p2_2(offset[2])*old_z2 + d2p2_2(offset[2]-1)*new_z2)/(dt**2)
return z,grad_z,laplace_z,v,a
# interpolate hidden_states for wave equation (separate z and v fields)
def interpolate_wave_states_2(old_hidden_states,new_hidden_states,offset,dt=1,orders_z=[1,1]):
"""
:old_hidden_states: old hidden states (size: bs x (v_size+p_size) x w x h)
:new_hidden_states: new hidden states (size: bs x (v_size+p_size) x w x h)
:offset: offset in x / y / t direction (vector of size 3 containing values between 0 and 1)
:dt: delta time between old and new hidden states
:orders_z: spline orders for z values of membrane in x and y direction
:return: interpolated fields for:
:z: z field
:grad(z): gradient of z field
:laplace(z): laplacian of z field
:dz/dt: velocity of z field
:dz^2/dt^2: acceleration of z field
"""
z_size = np.prod([i+1 for i in orders_z])
# z field
old_z,old_grad_z,old_laplace_z = interpolate_2d_wave(old_hidden_states[:,:z_size],offset[0:2],orders_z)
new_z,new_grad_z,new_laplace_z = interpolate_2d_wave(new_hidden_states[:,:z_size],offset[0:2],orders_z)
# v field
old_v,old_grad_v,old_laplace_v = interpolate_2d_wave(old_hidden_states[:,z_size:],offset[0:2],orders_z)
new_v,new_grad_V,new_laplace_v = interpolate_2d_wave(new_hidden_states[:,z_size:],offset[0:2],orders_z)
# first order interpolation of z and v fields
z = (1-offset[2])*old_z + offset[2]*new_z
grad_z = (1-offset[2])*old_grad_z + offset[2]*new_grad_z
laplace_z = (1-offset[2])*old_laplace_z + offset[2]*new_laplace_z
dz_dt = (new_z-old_z)/dt
v = (1-offset[2])*old_v + offset[2]*new_v # dzdt and v should be the same -> add residual loss!
a = (new_v-old_v)/dt
return z,grad_z,laplace_z,dz_dt,v,a
def superres_states(old_hidden_states,new_hidden_states,offset,dt=1,orders_v=[2,2],orders_p=[0,0],resolution_factor=1):#is not used... => remove
"""
:old_hidden_states: old hidden states (size: bs x (v_size+p_size) x w x h)
:new_hidden_states: new hidden states (size: bs x (v_size+p_size) x w x h)
:offset: offset in time direction (value between 0 and 1)
:dt: delta time between old and new hidden states
:orders_v: spline orders for vector potential of velocity field in x and y direction
:orders_p: spline orders for pressure field in x and y direction
:resolution_factor: superresolution factor
:return: superresolution fields for:
:a_z: vector potential
:v: veloctiy field
:dv_dt: time derivative of velocity field
:grad_v: gradient of velocity field
:laplace_v: laplacian of velocity field
:p: pressure field
:grad_p: gradient of pressure field
"""
v_size = np.prod([i+1 for i in orders_v])
old_a_z,old_v,old_grad_v,old_laplace_v = superres_2d_velocity(old_hidden_states[:,:v_size],orders_v,resolution_factor)
new_a_z,new_v,new_grad_v,new_laplace_v = superres_2d_velocity(new_hidden_states[:,:v_size],orders_v,resolution_factor)
old_p,old_grad_p = superres_2d_pressure(old_hidden_states[:,v_size:],orders_p,resolution_factor)
new_p,new_grad_p = superres_2d_pressure(new_hidden_states[:,v_size:],orders_p,resolution_factor)
# time is interpolated linearly
a_z = (1-offset)*old_a_z + offset*new_a_z
v = (1-offset)*old_v + offset*new_v
grad_v = (1-offset)*old_grad_v + offset*new_grad_v
laplace_v = (1-offset)*old_laplace_v + offset*new_laplace_v
p = (1-offset)*old_p + offset*new_p
grad_p = (1-offset)*old_grad_p + offset*new_grad_p
dv_dt = (new_v - old_v)/dt
return a_z,v,dv_dt,grad_v,laplace_v,p,grad_p
def interpolate_2d_velocity(weights,offsets,orders=[2,2]):
"""
Idea: return derivatives of splines directly, implement with convolutions
:weights: size: bs x (orders[0]+1) * (orders[1]+1) x w x h
:offsets: offsets to interpolate in between weights, size: 2
:orders: orders of spline for each dimension (note: counting starts at 0 => 0 ~ 1st order, 1 ~ 2nd order, 2 ~ 3rd order)
:return: a_z,v,grad_v,laplace_v - note that, width / height is decreased by 1, because we only interpolate in between support points (weights)
:a_z: vector potential of velocity field, size: bs x 1 x (w-1) x (h-1)
:rot(a_z): velocity field, size: bs x 2 x (w-1) x (h-1)
:grad(rot(a_z)): gradient (jacobian) of velocity field (dvx/dx dvx/dy dvy/dx dvy/dy), size: bs x 4 x (w-1) x (h-1)
:laplace(rot(a_z)): laplacian of velocity field (laplace(vx) laplace(vy)), size: bs x 2 x (w-1) x (h-1)
"""
# construct kernel matrix for 2x2 convolution based on offset:
# => number of input channels = (orders[0]+1) * (orders[1]+1)
# => number of output channels = 1 + 2 + 4 + 2 (a_z,v=rot(a_z),grad(v_x),grad(v_y),laplace(v_x),laplace(v_y)
offset_key = f"{offsets[0]} {offsets[1]}, orders: {orders}"
if offset_key in kernel_buffer_velocity.keys():
kernels = kernel_buffer_velocity[offset_key]
else:
offsets = (offsets.clone().unsqueeze(0).unsqueeze(2).unsqueeze(3).repeat(1,1,2,2)-offset_summary)
offsets = offsets.unsqueeze(2).unsqueeze(3).repeat(1,1,(orders[0]+1),(orders[1]+1),1,1).detach().requires_grad_(True)
kernels = toCuda(torch.zeros(1,1+2+4+2,(orders[0]+1),(orders[1]+1),2,2))
for l in range(orders[0]+1):
for m in range(orders[1]+1):
kernels[0:1,0:1,l,m,:,:] = p_multidim(offsets[:,:,l,m],[orders[0],orders[1]],[l,m])
# velocity
kernels[0:1,1:3,:,:,:,:] = rot(kernels[:,0:1,:,:,:,:],offsets,create_graph=True,retain_graph=True)
# gradients of velocity
kernels[0:1,3:5] = grad(kernels[0:1,1:2,:,:,:,:],offsets,create_graph=True,retain_graph=True)
kernels[0:1,5:7] = grad(kernels[0:1,2:3,:,:,:,:],offsets,create_graph=True,retain_graph=True)
# laplace of velocity
kernels[0:1,7:8] = div(kernels[0:1,3:5],offsets,retain_graph=True)
kernels[0:1,8:9] = div(kernels[0:1,5:7],offsets,retain_graph=False)
kernels = kernels.reshape(1,1+2+4+2,(orders[0]+1)*(orders[1]+1),2,2).detach()
# buffer kernels
kernel_buffer_velocity[offset_key] = kernels
save_buffers()
output = F.conv2d(weights,kernels[0],padding=0)
# CODO: to be even more efficient, we could separate interpolation in x/y direction
return output[:,0:1],output[:,1:3],output[:,3:7],output[:,7:9]
# superresolution with strided convolution
def superres_2d_velocity(weights,orders=[2,2],resolution_factor=1):
res_key = f"{resolution_factor}, orders: {orders}"
if res_key in kernel_buffer_velocity_superres.keys():
superres_kernels = kernel_buffer_velocity_superres[res_key]
else:
superres_kernels = toCuda(torch.zeros(1,1+2+4+2,(orders[0]+1)*(orders[1]+1),2*resolution_factor,2*resolution_factor))
for i in range(resolution_factor):
for j in range(resolution_factor):
offsets = (toCuda(torch.tensor([i/resolution_factor,j/resolution_factor])).unsqueeze(0).unsqueeze(2).unsqueeze(3).repeat(1,1,2,2)-1+offset_summary)
offsets = offsets.unsqueeze(2).unsqueeze(3).repeat(1,1,(orders[0]+1),(orders[1]+1),1,1).detach().requires_grad_(True)
kernels = toCuda(torch.zeros(1,1+2+4+2,(orders[0]+1),(orders[1]+1),2,2))
for l in range(orders[0]+1):
for m in range(orders[1]+1):
kernels[0:1,0:1,l,m,:,:] = p_multidim(offsets[:,:,l,m],[orders[0],orders[1]],[l,m])
# velocity
kernels[0:1,1:3,:,:,:,:] = rot(kernels[0:1,0:1,:,:,:,:],offsets,create_graph=True,retain_graph=True)
# gradients of velocity
kernels[0:1,3:5] = grad(kernels[0:1,1:2,:,:,:,:],offsets,create_graph=True,retain_graph=True)
kernels[0:1,5:7] = grad(kernels[0:1,2:3,:,:,:,:],offsets,create_graph=True,retain_graph=True)
# laplace of velocity
kernels[0:1,7:8] = div(kernels[0:1,3:5],offsets,retain_graph=True)
kernels[0:1,8:9] = div(kernels[0:1,5:7],offsets,retain_graph=False)
kernels = kernels.reshape(1,1+2+4+2,(orders[0]+1)*(orders[1]+1),2,2).detach().clone()
superres_kernels[:,:,:,i::resolution_factor,j::resolution_factor] = kernels
# buffer kernels
superres_kernels = superres_kernels.permute(0,2,1,3,4)
kernel_buffer_velocity_superres[res_key] = superres_kernels
save_buffers()
output = F.conv_transpose2d(weights,superres_kernels[0],padding=0,stride=resolution_factor)
return output[:,0:1],output[:,1:3],output[:,3:7],output[:,7:9]
def interpolate_2d_pressure(weights,offsets,orders=[0,0]):
"""
Idea: return derivatives of splines directly, implement with convolutions
:weights: size: bs x (orders[0]+1) * (orders[1]+1) x w x h
:offsets: offsets to interpolate in between weights, size: 2
:orders: orders of spline for each dimension (note: counting starts at 0 => 0 ~ 1st order, 1 ~ 2nd order, 2 ~ 3rd order)
:return: p,grad_p - note that, width / height is decreased by 1, because we only interpolate in between support points (weights)
:p: pressure field, size: bs x 1 x (w-1) x (h-1)
:grad(p): gradient of pressure field, size: bs x 2 x (w-1) x (h-1)
"""
offset_key = f"{offsets[0]} {offsets[1]}, orders: {orders}"
if offset_key in kernel_buffer_pressure.keys():
kernels = kernel_buffer_pressure[offset_key]
else:
offsets = (offsets.clone().unsqueeze(0).unsqueeze(2).unsqueeze(3).repeat(1,1,2,2)-offset_summary)
offsets = offsets.unsqueeze(2).unsqueeze(3).repeat(1,1,(orders[0]+1),(orders[1]+1),1,1).detach().requires_grad_(True)
kernels = toCuda(torch.zeros(1,1+2,(orders[0]+1),(orders[1]+1),2,2))
for l in range(orders[0]+1):
for m in range(orders[1]+1):
kernels[0:1,0:1,l,m,:,:] = p_multidim(offsets[:,:,l,m],[orders[0],orders[1]],[l,m])
# grad p
kernels[0:1,1:3,:,:,:,:] = grad(kernels[:,0:1,:,:,:,:],offsets,create_graph=True,retain_graph=True)
kernels = kernels.reshape(1,1+2,(orders[0]+1)*(orders[1]+1),2,2).detach()
# buffer kernels
kernel_buffer_pressure[offset_key] = kernels
save_buffers()
output = F.conv2d(weights,kernels[0],padding=0)
return output[:,0:1],output[:,1:3]
# superresolution with strided convolution
def superres_2d_pressure(weights,orders=[0,0],resolution_factor=1):
res_key = f"{resolution_factor}, orders: {orders}"
if res_key in kernel_buffer_pressure_superres.keys():
superres_kernels = kernel_buffer_pressure_superres[res_key]
else:
superres_kernels = toCuda(torch.zeros(1,1+2,(orders[0]+1)*(orders[1]+1),2*resolution_factor,2*resolution_factor))
for i in range(resolution_factor):
for j in range(resolution_factor):
offsets = (toCuda(torch.tensor([i/resolution_factor,j/resolution_factor])).unsqueeze(0).unsqueeze(2).unsqueeze(3).repeat(1,1,2,2)-1+offset_summary)
offsets = offsets.unsqueeze(2).unsqueeze(3).repeat(1,1,(orders[0]+1),(orders[1]+1),1,1).detach().requires_grad_(True)
kernels = toCuda(torch.zeros(1,1+2,(orders[0]+1),(orders[1]+1),2,2))
for l in range(orders[0]+1):
for m in range(orders[1]+1):
kernels[0:1,0:1,l,m,:,:] = p_multidim(offsets[:,:,l,m],[orders[0],orders[1]],[l,m])
# grad p
kernels[0:1,1:3,:,:,:,:] = grad(kernels[:,0:1,:,:,:,:],offsets,create_graph=True,retain_graph=True)
kernels = kernels.reshape(1,1+2,(orders[0]+1)*(orders[1]+1),2,2).detach().clone()
superres_kernels[:,:,:,i::resolution_factor,j::resolution_factor] = kernels
# buffer kernels
superres_kernels = superres_kernels.permute(0,2,1,3,4)
kernel_buffer_pressure_superres[res_key] = superres_kernels
save_buffers()
output = F.conv_transpose2d(weights,superres_kernels[0],padding=0,stride=resolution_factor)
return output[:,0:1],output[:,1:3]
def interpolate_2d_wave(weights,offsets,orders=[1,1]):
"""
Idea: return derivatives of splines directly, implement with convolutions
:weights: size: bs x (orders[0]+1) * (orders[1]+1) x w x h
:offsets: offsets to interpolate in between weights, size: 2
:orders: orders of spline for each dimension (note: counting starts at 0 => 0 ~ 1st order, 1 ~ 2nd order, 2 ~ 3rd order)
:return: z,grad_z,laplace_z - note that, width / height is decreased by 1, because we only interpolate in between support points (weights)
:z: z value of membrane, size: bs x 1 x (w-1) x (h-1)
:grad(z): gradient of z field (dz/dx dz/dy), size: bs x 2 x (w-1) x (h-1)
:laplace(z): laplacian of z values, size: bs x 1 x (w-1) x (h-1)
"""
offset_key = f"{offsets[0]} {offsets[1]}, orders: {orders}"
if offset_key in kernel_buffer_wave.keys():
kernels = toCuda(kernel_buffer_wave[offset_key])
else:
offsets = (offsets.clone().unsqueeze(0).unsqueeze(2).unsqueeze(3).repeat(1,1,2,2)-offset_summary)
offsets = offsets.unsqueeze(2).unsqueeze(3).repeat(1,1,(orders[0]+1),(orders[1]+1),1,1).detach().requires_grad_(True)
# z_value
kernels = toCuda(torch.zeros(1,1+2+1,(orders[0]+1),(orders[1]+1),2,2))
for l in range(orders[0]+1):
for m in range(orders[1]+1):
kernels[0:1,0:1,l,m,:,:] = p_multidim(offsets[:,:,l,m],[orders[0],orders[1]],[l,m])
# gradients of z_value
kernels[0:1,1:3] = grad(kernels[0:1,0:1,:,:,:,:],offsets,create_graph=True,retain_graph=True)
# laplace of z_value
kernels[0:1,3:4] = div(kernels[0:1,1:3],offsets,retain_graph=False)
kernels = kernels.reshape(1,1+2+1,(orders[0]+1)*(orders[1]+1),2,2).detach()
# buffer kernels
kernel_buffer_wave[offset_key] = kernels
save_buffers()
output = F.conv2d(weights,kernels[0],padding=0)
# CODO: to be even more efficient, we could separate interpolation in x/y direction
return output[:,0:1],output[:,1:3],output[:,3:4]
# superresolution with strided convolution
def superres_2d_wave(weights,orders=[1,1],resolution_factor=1):
"""
:return: z,grad_z,laplace_z,v
"""
res_key = f"{resolution_factor}, orders: {orders}"
if res_key in kernel_buffer_wave_superres.keys():
superres_kernels = kernel_buffer_wave_superres[res_key]
else:
superres_kernels = toCuda(torch.zeros(1,1+2+1+1,2*(orders[0]+1)*(orders[1]+1),2*resolution_factor,2*resolution_factor))
for i in range(resolution_factor):
for j in range(resolution_factor):
offsets = (toCuda(torch.tensor([i/resolution_factor,j/resolution_factor])).unsqueeze(0).unsqueeze(2).unsqueeze(3).repeat(1,1,2,2)-1+offset_summary)
offsets = offsets.unsqueeze(2).unsqueeze(3).repeat(1,1,(orders[0]+1),(orders[1]+1),1,1).detach().requires_grad_(True)
kernels = toCuda(torch.zeros(1,1+2+1+1,2,(orders[0]+1),(orders[1]+1),2,2))
for l in range(orders[0]+1):
for m in range(orders[1]+1):
kernels[0:1,0:1,0,l,m,:,:] = p_multidim(offsets[:,:,l,m],[orders[0],orders[1]],[l,m])
# gradients of z_value
kernels[0:1,1:3,0,:,:,:,:] = grad(kernels[0:1,0:1,0,:,:,:,:],offsets,create_graph=True,retain_graph=True)
# laplace of z_value
kernels[0:1,3:4,0,:,:,:,:] = div(kernels[0:1,1:3],offsets,retain_graph=False)
#v and a
for l in range(orders[0]+1):
for m in range(orders[1]+1):
kernels[0:1,4:5,1,l,m,:,:] = p_multidim(offsets[:,:,l,m],[orders[0],orders[1]],[l,m])
#kernels = kernels.reshape(1,1+2+1+1+1,2*(orders[0]+1)*(orders[1]+1),2,2).detach()
kernels = kernels.reshape(1,1+2+1+1,2*(orders[0]+1)*(orders[1]+1),2,2).detach().clone()
superres_kernels[:,:,:,i::resolution_factor,j::resolution_factor] = kernels
# buffer kernels
superres_kernels = superres_kernels.permute(0,2,1,3,4)
kernel_buffer_wave_superres[res_key] = superres_kernels
save_buffers()
output = F.conv_transpose2d(weights,superres_kernels[0],padding=0,stride=resolution_factor)
return output[:,0:1],output[:,1:3],output[:,3:4],output[:,4:5]