-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_via_accelerate.py
379 lines (320 loc) · 18.5 KB
/
train_via_accelerate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os, wandb, json
import torch
import accelerate
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import ProjectConfiguration, set_seed
from accelerate.tracking import TensorBoardTracker, WandBTracker
from train.optimizer.build_optimizer import get_optimizer
from train.scheduler.build_scheduler import get_scheduler
from dataset.loader import load_data
from model import load_model
from model.utils import getModelSize
from utils import get_rank, get_local_rank, smart_load_weight, is_ancestor, printg, print0, think_up_a_unique_name_for_inference,smart_read_weight_path
from config.utils import print_namespace_tree, flatten_dict, retrieve_dict
from dataset.dataset_arguements import DataloaderConfig
from train.train_arguements import TrainConfig
from project_arguements import ProjectConfig, get_args, to_dict
from evaluator.evaluator_arguements import EvaluatorConfig, EvalPlotConfig
from train.train_arguements import get_parallel_config_of_accelerator
import albumentations as alb
import logging
from torch.utils.data import DataLoader
# Set up basic configuration for logging
# This will only display WARNING and above logs
logging.basicConfig(level=logging.WARNING)
os.environ['WANDB_CONSOLE']='off'
def load_optimizer_and_schedule(model, train_dataloader, args: TrainConfig):
optimizer = get_optimizer(model, args.Optimizer)
scheduler = get_scheduler(optimizer, train_dataloader, args.Scheduler)
return optimizer, scheduler
def load_dataloader(args:DataloaderConfig, infer=False, needed_dataset = None, test_dataloader=False):
local_rank = get_local_rank(args)
if needed_dataset is None:
needed=['train', 'valid'] if not infer else ['valid']
else:
needed= [t.lower() for t in needed_dataset.split(',')]
dataset_pool = load_data(args.Dataset, needed=needed,test_dataloader=test_dataloader)
train_dataset, valid_dataset, test_dataset = dataset_pool['train'], dataset_pool['valid'], dataset_pool['test']
#print(sampling_strategy)
if train_dataset is not None:
print0(f"================> Train dataset length: {len(train_dataset)} <================")
if valid_dataset is not None:
print0(f"================> Valid dataset length: {len(valid_dataset)} <================")
if test_dataset is not None:
print0(f"================> TEST dataset length: {len(test_dataset)} <================")
#train_dataset.return_idx = True
####train_dataset.return_idx = True
if infer:
raise NotImplementedError
for dataset in [train_dataset, valid_dataset, test_dataset]:
if dataset is None: continue
dataset.return_idx = True
train_dataloader = valid_dataloader = test_dataloader = None
if args.donot_use_accelerate_dataloader:
from torch.utils.data.distributed import DistributedSampler
assert args.data_parallel_dispatch or not args.multi_gpu
# if args.multi_gpu:printg(f"""
# WARNING: if you use the native multi-gpu dataloader, you need manually call dataloader.sampler.set_epoch(epoch) in each epoch.
# [Currently(20231124), We dont realize such feature.]
# """)
num_workers = args.num_workers
if train_dataset is not None:
train_datasampler = DistributedSampler(train_dataset, shuffle=True) if args.multi_gpu else None
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, sampler=train_datasampler,
num_workers=num_workers,
pin_memory=not args.not_pin_memory, drop_last=True if not infer else False)
if valid_dataset is not None:
valid_datasampler = DistributedSampler(valid_dataset, shuffle=False) if args.multi_gpu else None
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, sampler=valid_datasampler,
num_workers=num_workers,
pin_memory=not args.not_pin_memory, drop_last=False,)
if test_dataset is not None:
test_datasampler = DistributedSampler(test_dataset, shuffle=False) if args.multi_gpu else None
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, sampler=test_datasampler,
num_workers=num_workers,
pin_memory=not args.not_pin_memory, drop_last=False,)
else:
num_workers = args.num_workers if args.data_parallel_dispatch or local_rank == 0 else 0
if train_dataset is not None:
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=num_workers,
pin_memory=not args.not_pin_memory, drop_last=True if not infer else False)
if valid_dataset is not None:
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=num_workers,
pin_memory=not args.not_pin_memory, drop_last=False,)
if test_dataset is not None:
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=num_workers,
pin_memory=not args.not_pin_memory, drop_last=False,)
return train_dataloader, valid_dataloader, test_dataloader
import time
def build_accelerator(args: ProjectConfig):
if accelerate.__version__ in ['0.24.0', '0.24.1']:
printg(f"""
WARNING:accelerate version {accelerate.__version__} has a bug that will not random shuffle the dataloader. Please downgrade to 0.23.0.
See https://github.com/huggingface/accelerate/issues/2157 """)
exit(0)
use_wandb = (isinstance(args.task, TrainConfig) and args.task.Monitor.use_wandb)
if get_rank()!=0:
time.sleep(1)
os.makedirs(args.output_dir, exist_ok=True)
project_config = ProjectConfiguration(
project_dir=str(args.output_dir),
automatic_checkpoint_naming=True,
total_limit=args.task.Checkpoint.num_max_checkpoints,
)
log_with = []
if isinstance(args.task, TrainConfig): log_with += ['tensorboard']
if use_wandb:log_with.append("wandb")
if len(log_with)==0:log_with=None
aacelerator_config = {
'dataloader_config':accelerate.DataLoaderConfiguration(dispatch_batches=not args.DataLoader.data_parallel_dispatch),
'project_config': project_config,
'log_with': log_with
}
if isinstance(args.task, TrainConfig):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=args.task.find_unused_parameters)
aacelerator_config['kwargs_handlers'] = [ddp_kwargs]
aacelerator_config['gradient_accumulation_steps'] = args.task.gradient_accumulation_steps
set_seed(args.task.seed)
accelerator = Accelerator(**aacelerator_config) # in accelerate>0.20.0, the dispatch logic is changed. thus in low drive and low gpu, it will stuck or raise after reinitialize the datalodaer .See https://github.com/OpenAccess-AI-Collective/axolotl/issues/494
accelerator.init_trackers(
project_name=f"{args.dataset_name}",
config=None,
init_kwargs={"wandb": {'group': args.model_name, 'name': args.trial_name, 'settings': wandb.Settings(_disable_stats=True)} } if use_wandb else {}
)
if accelerator.is_main_process:
cfg = to_dict(args)
cfg['parallel_config'] = get_parallel_config_of_accelerator(accelerator)
cfg = retrieve_dict(cfg,exclude_key=['downstream_pool','parallel_config'])
if 'trained_batch_size' not in cfg or cfg['trained_batch_size'] is None or isinstance(args.task,TrainConfig):
trained_batch_size = cfg['parallel_config']['num_processes']*cfg['batch_size'] * cfg.get('gradient_accumulation_steps',1)
cfg['trained_batch_size'] = trained_batch_size
args.model.trained_batch_size = trained_batch_size
for tracker in accelerator.trackers:
if isinstance(tracker, TensorBoardTracker):
pool = flatten_dict(cfg)
board_pool = {}
for key, val in pool.items():
if isinstance(val, list):
val = ",".join([str(t) for t in val])
board_pool[key] = val
tracker.store_init_configuration(board_pool)
elif isinstance(tracker, WandBTracker):
tracker.store_init_configuration(cfg)
else:
tracker.store_init_configuration(cfg)
# if use_wandb and accelerator.is_main_process:
# accelerator.trackers[-1].store_init_configuration()
accelerator.print(f'Output dir: {args.output_dir}')
if accelerator.is_main_process:
print_namespace_tree(args)
if isinstance(args.task, TrainConfig):
config_path = os.path.join(args.output_dir, 'train_config.json')
#save(args, path=config_path, save_dc_types=True, indent=4)
with open(config_path, 'w') as f:
#json.dump(convert_namespace_tree(args), f, indent=4)
#print(retrieve_dict(to_dict(args)))
#raise
json.dump(retrieve_dict(to_dict(args)), f, indent=4)
args.DataLoader.multi_gpu = accelerator.state._shared_state['backend'] is not None
#print(args.DataLoader.multi_gpu)
if accelerator.is_local_main_process:
print(f"Current Node: {os.uname().nodename}")
return accelerator
from train.utils import DummyProgressBar, DistributedTqdmProgressBar
from train.PromptTrainer import Trainer
from tqdm.auto import tqdm
def main(args: ProjectConfig):
save_on_epoch_end = True
epoch_end_callbacks = None
accelerator = build_accelerator(args)
# if isinstance(args.task, EvalPlotConfig):
# save_root = args.task.plot_data_dir ## direct use the /visualize path
# if accelerator.is_main_process:plot_evaluate(args, save_root)
# return
needed_dataset = args.task.eval_dataflag if isinstance(args.task, EvaluatorConfig) else None
# needed_dataset = 'train,valid,test'
train_dataloader, valid_dataloader, test_dataloader = load_dataloader(args.DataLoader,
infer=isinstance(args.task, EvaluatorConfig),
needed_dataset=needed_dataset, test_dataloader=args.test_dataloader)
if args.test_dataloader:
train_dataloader, valid_dataloader = accelerator.prepare(train_dataloader, valid_dataloader)
if train_dataloader is not None:
for i, data in enumerate(tqdm(train_dataloader)):
# if i%100==1:
# train_dataloader.dataset.timers.log()
pass
if valid_dataloader is not None:
for i, data in enumerate(tqdm(valid_dataloader)):
pass
if test_dataloader is not None:
for i, data in enumerate(tqdm(test_dataloader)):
pass
return
model = load_model(args.model)
if isinstance(args.task, TrainConfig): model.freeze_model_during_train(args.task.Freeze)
#model = torch.nn.Conv2d(3, 3, 3)
#if isinstance(args.task, TrainConfig): model.freeze_model_during_train(args.task.Freeze)
param_sum, buffer_sum, all_size = getModelSize(model)
accelerator.print(f" Number of Parameters: {param_sum}, Number of Buffers: {buffer_sum}, Size of Model: {all_size:.4f} MB\n")
optimizer, lr_scheduler = None, None
if isinstance(args.task, TrainConfig): ### If use this, we can not claim an optimizer in the evaluator thus not support the Flash Attention BF16 for evaluation
optimizer, lr_scheduler = load_optimizer_and_schedule(model, train_dataloader, args.task)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
lr_scheduler = None
## You must load weight before Deepspeed, otherwise it does not work
if args.task.Checkpoint.preload_weight:
printg(f"LOADING MODEL from {args.task.Checkpoint.preload_weight}")
unwrapper_model = model
while hasattr(unwrapper_model,'module'):
unwrapper_model = unwrapper_model.module
smart_load_weight(unwrapper_model, smart_read_weight_path(args.task.Checkpoint.preload_weight,device=accelerator.device),
strict=not args.task.Checkpoint.load_weight_partial, shape_strict=not args.task.Checkpoint.load_weight_ignore_shape)
#Shape mismatching always throws an exceptions. Only key mismatching can be ignored.
# torch.save(unwrapper_model.state_dict(), "pretrain_weights/slougat.matched_start.pt")
# raise
if hasattr(args.model.encoder, 'compile_image_encoder') and args.model.encoder.compile_image_encoder:
model.encoder.sam_image_encoder = torch.compile(model.encoder.sam_image_encoder)
#train_dataloader, valid_dataloader, optimizer, lr_scheduler, model = accelerator.prepare(train_dataloader, valid_dataloader, optimizer, lr_scheduler, model)\
if args.DataLoader.donot_use_accelerate_dataloader:
optimizer, lr_scheduler, model = accelerator.prepare(optimizer, lr_scheduler, model)
else:
train_dataloader, valid_dataloader, optimizer, lr_scheduler, model = accelerator.prepare(train_dataloader, valid_dataloader, optimizer, lr_scheduler, model)
start_epoch = 0
if args.task.Checkpoint.preload_state:
print(f"resume from {args.task.Checkpoint.preload_state}")
accelerator.load_state(args.task.Checkpoint.preload_state)
if args.task.Checkpoint.continue_train:
start_epoch = int(os.path.split(args.task.Checkpoint.preload_state)[-1].replace('checkpoint_',""))
old_best_weight_path = os.path.join(os.path.dirname(os.path.dirname(args.task.Checkpoint.preload_state)), 'best')
if os.path.exists(old_best_weight_path) and accelerator.is_main_process:
new_best_weight_path = f"{old_best_weight_path}.epoch{start_epoch}"
if not os.path.exists(new_best_weight_path):
print(f"rename {old_best_weight_path} to {new_best_weight_path}")
os.system(f"mv {old_best_weight_path} ")
accelerator.project_configuration.iteration = start_epoch
else:
start_epoch = 0
accelerator.project_configuration.iteration = start_epoch
if args.DataLoader.loader_all_data_in_memory_once:
raise NotImplementedError(f"we dont allow all data into memory since it is too large")
if isinstance(args.task, EvaluatorConfig):
raise NotImplementedError
assert args.task.Checkpoint.preload_weight is not None
assert is_ancestor(args.output_dir, args.task.Checkpoint.preload_weight), f"the output_dir {args.output_dir} is not the ancestor of preload_state {args.task.Checkpoint.preload_state}"
branch=args.task.eval_dataflag
accelerator.print(f"Notice!!!! You are testing on branch ======> {branch} <======")
infer_mode = args.task.infer_mode
if branch in ['TRAIN']:
dataloader = train_dataloader
elif branch in ['DEV','VALID']:
dataloader = valid_dataloader
elif branch in ['TEST']:
dataloader = test_dataloader
else:
raise NotImplementedError
infer_result = get_evaluate_detail(model, dataloader, args.task)
save_root = os.path.join(args.output_dir, 'visualize',branch)
if not os.path.exists(save_root):os.makedirs(save_root,exist_ok=True)
data_name = think_up_a_unique_name_for_inference(args)
save_data_root = os.path.join(save_root, f'{data_name}_data')
if not os.path.exists(save_data_root):os.makedirs(save_data_root,exist_ok=True)
local_rank = int(os.environ["LOCAL_RANK"]) if "LOCAL_RANK" in os.environ else 0
data_save_root = os.path.join(save_data_root, f'infer_result_GPU{local_rank}')
printg(f"save visual data in {data_save_root}")
accelerator.wait_for_everyone()
save_dict_of_numpy(infer_result, data_save_root)
if accelerator.is_main_process:
with open(os.path.join(save_data_root, 'infer_config.json'), 'w') as f:
json.dump(retrieve_dict(to_dict(args)), f, indent=4)
#save(args, path=os.path.join(save_data_root, 'infer_config.yaml'), indent=4)
#torch.save(infer_result,os.path.join(save_data_root, f'infer_result.GPU{local_rank}.pt'))
#return
accelerator.wait_for_everyone()
if accelerator.is_main_process:
plot_evaluate(args, save_data_root)
if args.task.clean_up_plotdata:os.system(f"rm -r {save_data_root}")
accelerator.wait_for_everyone()
return
if accelerator.is_main_process and args.task.Monitor.wandbwatch:
wandb.watch(model, log_freq = args.task.Monitor.wandbwatch)
#torch.cuda.empty_cache()
# Trainer
trainer = Trainer(
model=model,
train_dataloader=train_dataloader,
validation_dataloader=valid_dataloader,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
accelerator=accelerator,
train_config=args.task,
)
if args.quick_debug:
trainer.quick_test()
return
if args.quick_test_inference:
trainer.test_inference()
return
print(f"======> GPU:{accelerator.process_index} is ready for training..........")
accelerator.print(f'Start training for totally {args.task.epochs} epochs')
trainer.model_name = args.model.nickname
trainer.batch_size = args.DataLoader.batch_size
trainer.train(start_epoch)
#accelerator.wait_for_everyone()
accelerator.print('Training finished')
if accelerator.is_main_process:
unwrapper_model = model
while hasattr(unwrapper_model,'module'):
unwrapper_model = unwrapper_model.module
unwrapper_model.save_pretrained(args.output_dir,safe_serialization=False)
#accelerator.wait_for_everyone()
# if accelerator.is_main_process:
# os.system("""sleep 30; ps -axuf|grep wandb| awk '{print $2}'| xargs kill""")
accelerator.end_training()
if __name__ == "__main__":
args = get_args()
#print(args)
main(args)