Skip to content

Commit

Permalink
[SPARK-45227][CORE] Fix a subtle thread-safety issue with CoarseGrain…
Browse files Browse the repository at this point in the history
…edExecutorBackend

### What changes were proposed in this pull request?
Fix a subtle thread-safety issue with CoarseGrainedExecutorBackend where an executor process randomly gets stuck

### Why are the changes needed?
For each executor, the single-threaded dispatcher can run into an "infinite loop" (as explained in the SPARK-45227). Once an executor process runs into a state, it'd stop launching tasks from the driver or reporting task status back.

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
```
$ build/mvn package -DskipTests -pl core
$ build/mvn -Dtest=none -DwildcardSuites=org.apache.spark.executor.CoarseGrainedExecutorBackendSuite test
```

### Was this patch authored or co-authored using generative AI tooling?
No

******************************************************************************
**_Please feel free to skip reading unless you're interested in details_**
******************************************************************************

### Symptom

Our Spark 3 app running on EMR 6.10.0 with Spark 3.3.1 got stuck in the very last step of writing a data frame to S3 by calling `df.write`. Looking at Spark UI, we saw that an executor process hung over 1 hour. After we manually killed the executor process, the app succeeded. Note that the same EMR cluster with two worker nodes was able to run the same app without any issue before and after the incident.

Below is what's observed from relevant container logs and thread dump.

- A regular task that's sent to the executor, which also reported back to the driver upon the task completion.

```
    $zgrep 'task 150' container_1694029806204_12865_01_000001/stderr.gz
    23/09/12 18:13:55 INFO TaskSetManager: Starting task 150.0 in stage 23.0 (TID 923) (ip-10-0-185-107.ec2.internal, executor 3, partition 150, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()
    23/09/12 18:13:55 INFO TaskSetManager: Finished task 150.0 in stage 23.0 (TID 923) in 126 ms on ip-10-0-185-107.ec2.internal (executor 3) (16/200)

    $zgrep ' 923' container_1694029806204_12865_01_000004/stderr.gz
    23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 923

    $zgrep 'task 150' container_1694029806204_12865_01_000004/stderr.gz
    23/09/12 18:13:55 INFO Executor: Running task 150.0 in stage 23.0 (TID 923)
    23/09/12 18:13:55 INFO Executor: Finished task 150.0 in stage 23.0 (TID 923). 4495 bytes result sent to driver
```

- Another task that's sent to the executor but didn't get launched since the single-threaded dispatcher was stuck (presumably in an "infinite loop" as explained later).

```
    $zgrep 'task 153' container_1694029806204_12865_01_000001/stderr.gz
    23/09/12 18:13:55 INFO TaskSetManager: Starting task 153.0 in stage 23.0 (TID 924) (ip-10-0-185-107.ec2.internal, executor 3, partition 153, NODE_LOCAL, 4432 bytes) taskResourceAssignments Map()

    $zgrep ' 924' container_1694029806204_12865_01_000004/stderr.gz
    23/09/12 18:13:55 INFO YarnCoarseGrainedExecutorBackend: Got assigned task 924

    $zgrep 'task 153' container_1694029806204_12865_01_000004/stderr.gz
    >> note that the above command has no matching result, indicating that task 153.0 in stage 23.0 (TID 924) was never launched
```

- Thread dump shows that the dispatcher-Executor thread has the following stack trace.

```
    "dispatcher-Executor" apache#40 daemon prio=5 os_prio=0 tid=0x0000ffff98e37800 nid=0x1aff runnable [0x0000ffff73bba000]
    java.lang.Thread.State: RUNNABLE
    at scala.runtime.BoxesRunTime.equalsNumObject(BoxesRunTime.java:142)
    at scala.runtime.BoxesRunTime.equals2(BoxesRunTime.java:131)
    at scala.runtime.BoxesRunTime.equals(BoxesRunTime.java:123)
    at scala.collection.mutable.HashTable.elemEquals(HashTable.scala:365)
    at scala.collection.mutable.HashTable.elemEquals$(HashTable.scala:365)
    at scala.collection.mutable.HashMap.elemEquals(HashMap.scala:44)
    at scala.collection.mutable.HashTable.findEntry0(HashTable.scala:140)
    at scala.collection.mutable.HashTable.findOrAddEntry(HashTable.scala:169)
    at scala.collection.mutable.HashTable.findOrAddEntry$(HashTable.scala:167)
    at scala.collection.mutable.HashMap.findOrAddEntry(HashMap.scala:44)
    at scala.collection.mutable.HashMap.put(HashMap.scala:126)
    at scala.collection.mutable.HashMap.update(HashMap.scala:131)
    at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$receive$1.applyOrElse(CoarseGrainedExecutorBackend.scala:200)
    at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:115)
    at org.apache.spark.rpc.netty.Inbox$$Lambda$323/1930826709.apply$mcV$sp(Unknown Source)
    at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:213)
    at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
    at org.apache.spark.rpc.netty.MessageLoop.org$apache$spark$rpc$netty$MessageLoop$$receiveLoop(MessageLoop.scala:75)
    at org.apache.spark.rpc.netty.MessageLoop$$anon$1.run(MessageLoop.scala:41)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:750)
```

### Relevant code paths

Within an executor process, there's a [dispatcher thread](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/rpc/netty/MessageLoop.scala#L170) dedicated to CoarseGrainedExecutorBackend(a single RPC endpoint) that launches tasks scheduled by the driver. Each task is run on a TaskRunner thread backed by a thread pool created for the executor. The TaskRunner thread and the dispatcher thread are different. However, they read and write a common object (i.e., taskResources) that's a mutable hashmap without thread-safety, in [Executor](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/Executor.scala#L561) and [CoarseGrainedExecutorBackend](https://github.com/apache/spark/blob/1fdd46f173f7bc90e0523eb0a2d5e8e27e990102/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala#L189), respectively.

### What's going on?

Based on the above observations, our hypothesis is that the dispatcher thread runs into an "infinite loop" due to a race condition when two threads access the same hashmap object.  For illustration purpose, let's consider the following scenario where two threads (Thread 1 and Thread 2) access a hash table without thread-safety

- Thread 1 sees A.next = B, but then yields execution to Thread 2
<img src="https://issues.apache.org/jira/secure/attachment/13063040/13063040_hashtable1.png" width="400">

- Thread 2 triggers a resize operation resulting in B.next = A (Note that hashmap doesn't care about ordering), and then yields execution to Thread 1.
<img src="https://issues.apache.org/jira/secure/attachment/13063041/13063041_hashtable2.png" width="400">

- After taking over CPU, Thread 1 would run into an "infinite loop" when traversing the list in the last bucket, given A.next = B and B.next = A in its view.

Closes apache#43021 from xiongbo-sjtu/master.

Authored-by: Bo Xiong <[email protected]>
Signed-off-by: Mridul Muralidharan <mridul<at>gmail.com>
  • Loading branch information
Bo Xiong authored and Mridul Muralidharan committed Sep 29, 2023
1 parent 1d9905a commit 8e6b160
Show file tree
Hide file tree
Showing 2 changed files with 10 additions and 7 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,9 @@ package org.apache.spark.executor
import java.net.URL
import java.nio.ByteBuffer
import java.util.Locale
import java.util.concurrent.ConcurrentHashMap
import java.util.concurrent.atomic.AtomicBoolean

import scala.collection.mutable
import scala.util.{Failure, Success}
import scala.util.control.NonFatal

Expand Down Expand Up @@ -71,9 +71,12 @@ private[spark] class CoarseGrainedExecutorBackend(
/**
* Map each taskId to the information about the resource allocated to it, Please refer to
* [[ResourceInformation]] for specifics.
* CHM is used to ensure thread-safety (https://issues.apache.org/jira/browse/SPARK-45227)
* Exposed for testing only.
*/
private[executor] val taskResources = new mutable.HashMap[Long, Map[String, ResourceInformation]]
private[executor] val taskResources = new ConcurrentHashMap[
Long, Map[String, ResourceInformation]
]

private var decommissioned = false

Expand Down Expand Up @@ -186,7 +189,7 @@ private[spark] class CoarseGrainedExecutorBackend(
} else {
val taskDesc = TaskDescription.decode(data.value)
logInfo("Got assigned task " + taskDesc.taskId)
taskResources(taskDesc.taskId) = taskDesc.resources
taskResources.put(taskDesc.taskId, taskDesc.resources)
executor.launchTask(this, taskDesc)
}

Expand Down Expand Up @@ -266,7 +269,7 @@ private[spark] class CoarseGrainedExecutorBackend(
}

override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer): Unit = {
val resources = taskResources.getOrElse(taskId, Map.empty[String, ResourceInformation])
val resources = taskResources.getOrDefault(taskId, Map.empty[String, ResourceInformation])
val cpus = executor.runningTasks.get(taskId).taskDescription.cpus
val msg = StatusUpdate(executorId, taskId, state, data, cpus, resources)
if (TaskState.isFinished(state)) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -302,7 +302,7 @@ class CoarseGrainedExecutorBackendSuite extends SparkFunSuite
resourceProfile = ResourceProfile.getOrCreateDefaultProfile(conf))
assert(backend.taskResources.isEmpty)

val taskId = 1000000
val taskId = 1000000L
// We don't really verify the data, just pass it around.
val data = ByteBuffer.wrap(Array[Byte](1, 2, 3, 4))
val taskDescription = new TaskDescription(taskId, 2, "1", "TASK 1000000", 19,
Expand Down Expand Up @@ -339,14 +339,14 @@ class CoarseGrainedExecutorBackendSuite extends SparkFunSuite
backend.self.send(LaunchTask(new SerializableBuffer(serializedTaskDescription)))
eventually(timeout(10.seconds)) {
assert(backend.taskResources.size == 1)
val resources = backend.taskResources(taskId)
val resources = backend.taskResources.get(taskId)
assert(resources(GPU).addresses sameElements Array("0", "1"))
}

// Update the status of a running task shall not affect `taskResources` map.
backend.statusUpdate(taskId, TaskState.RUNNING, data)
assert(backend.taskResources.size == 1)
val resources = backend.taskResources(taskId)
val resources = backend.taskResources.get(taskId)
assert(resources(GPU).addresses sameElements Array("0", "1"))

// Update the status of a finished task shall remove the entry from `taskResources` map.
Expand Down

0 comments on commit 8e6b160

Please sign in to comment.