-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_test_pred.py
36 lines (30 loc) · 1.1 KB
/
rnn_test_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import pickle
import os
import argparse
from utils import Tokenizer
from models import Tagger
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("sent", type=str)
parser.add_argument("--epoch", type=int, default=12)
parser.add_argument("--lang", default="Tom7")
return parser.parse_args()
args = parse_args()
tfilename = os.path.join("models", args.lang, "tokenizer.pkl")
with open(tfilename, "rb") as fh:
tokenizer = pickle.load(fh)
model = Tagger(tokenizer.n_tokens, 10, 100)
filename = f"./models/{args.lang}/epoch{args.epoch}.th"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.load_state_dict(torch.load(filename, map_location=device))
token_ids = torch.tensor(tokenizer.tokenize(args.sent, add=False)).unsqueeze(dim=0)
print(token_ids)
labels = torch.zeros_like(token_ids)
mask = torch.zeros_like(token_ids)
results = model(token_ids, labels, mask)
predictions = results["predictions"].squeeze().tolist()
print("Tokenizer:", tokenizer.token_to_index)
print("Sentence:", args.sent)
print("Predictions:", predictions)
breakpoint()