forked from kennethreitz/coinbin.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictions.py
84 lines (56 loc) · 2.08 KB
/
predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import time
import uuid
import records
import os
import maya
import numpy as np
import pandas as pd
# Matplotlib hack.
import matplotlib
matplotlib.use('agg')
import mpld3
from fbprophet import Prophet
from scraper import Coin, MWT, convert_to_decimal
PERIODS = 30
GRAPH_PERIODS = 365
@MWT(timeout=300)
def get_predictions(coin, render=False):
"""Returns a list of predictions, unless render is True.
Otherwise, returns the path of a rendered image.
"""
c = Coin(coin)
q = "SELECT date as ds, value as y from api_coin WHERE name=:coin"
db = records.Database()
rows = db.query(q, coin=c.name)
df = rows.export('df')
df['y_orig'] = df['y'] # to save a copy of the original data..you'll see why shortly.
# log-transform y
df['y'] = np.log(df['y'])
model = Prophet(weekly_seasonality=True, yearly_seasonality=True)
model.fit(df)
periods = PERIODS if not render else GRAPH_PERIODS
future_data = model.make_future_dataframe(periods=periods, freq='d')
forecast_data = model.predict(future_data)
if render:
matplotlib.pyplot.gcf()
fig = model.plot(forecast_data, xlabel='Date', ylabel='log($)')
return mpld3.fig_to_html(fig)
forecast_data_orig = forecast_data # make sure we save the original forecast data
forecast_data_orig['yhat'] = np.exp(forecast_data_orig['yhat'])
forecast_data_orig['yhat_lower'] = np.exp(forecast_data_orig['yhat_lower'])
forecast_data_orig['yhat_upper'] = np.exp(forecast_data_orig['yhat_upper'])
df['y_log'] = df['y'] #copy the log-transformed data to another column
df['y'] = df['y_orig'] #copy the original data to 'y'
# print(forecast_data_orig)
d = forecast_data_orig['yhat'].to_dict()
predictions = []
for i, k in enumerate(list(d.keys())[-PERIODS:]):
w = maya.when(f'{i+1} days from now')
predictions.append({
'when': w.slang_time(),
'timestamp': w.iso8601(),
'usd': convert_to_decimal(d[k]),
})
return predictions
if __name__ == '__main__':
print(get_predictions('btc'))