forked from nextgenusfs/genome_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfindHMM.py
executable file
·290 lines (264 loc) · 12.8 KB
/
findHMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#!/usr/bin/env python
import sys, os, subprocess, argparse, shutil, warnings, csv, multiprocessing
from Bio import SeqIO
from natsort import natsorted
import pandas as pd
with warnings.catch_warnings():
warnings.simplefilter('ignore')
from Bio import SearchIO
#setup menu with argparse
class MyFormatter(argparse.ArgumentDefaultsHelpFormatter):
def __init__(self,prog):
super(MyFormatter,self).__init__(prog,max_help_position=48)
parser=argparse.ArgumentParser(prog='findHMM.py',
description='''Find HMM model in GenBank flatfile genome.''',
epilog="""Written by Jon Palmer (2016) [email protected]""",
formatter_class = MyFormatter)
parser.add_argument('-i','--input', nargs='+', required=True, help='Genome (GBK) format')
parser.add_argument('-o','--out', default='findHMM', help='Output Basename')
parser.add_argument('-m','--hmm', required=True, help='HMM file')
parser.add_argument('--evalue', default='1e-50', help='HMM evalue')
parser.add_argument('--cpus', default=2, type=int, help='Number of CPUs')
parser.add_argument('--debug', action='store_true', help='Debug')
parser.add_argument('--maxIntron', default='3000', help='Maximum intron length')
args=parser.parse_args()
FNULL = open(os.devnull, 'w')
def getSize(filename):
st = os.stat(filename)
return st.st_size
def group_by_heading( some_source ):
buffer= []
for line in some_source:
if line.startswith( ">" ):
if buffer: yield buffer
buffer= [ line ]
else:
buffer.append( line )
yield buffer
def gb2output(input, output1, output3):
with open(output1, 'w') as proteins:
with open(output3, 'w') as scaffolds:
with open(input, 'rU') as gbk:
SeqRecords = SeqIO.parse(gbk, 'genbank')
for record in SeqRecords:
scaffolds.write(">%s\n%s\n" % (record.id, record.seq))
for f in record.features:
if f.type == "CDS":
try:
locusID = f.qualifiers['locus_tag'][0]
except KeyError: #if no locus_id it isn't a real locus or is partial?
continue
try:
protID = f.qualifiers['protein_id'][0]
except KeyError:
protID = '???'
try:
protSeq = f.qualifiers['translation'][0]
except KeyError:
continue
proteins.write(">%s\n%s\n" % (locusID+'_'+protID, protSeq))
def tblastnFilter(input, query, cpus, output):
global HitList, Scaffolds, tBlastN
HitList = []
Scaffolds = []
tBlastN = {}
#start by formatting blast db/dustmasker filtered format
subprocess.call(['dustmasker', '-in', input, '-infmt', 'fasta', '-parse_seqids', '-outfmt', 'maskinfo_asn1_bin', '-out', os.path.join(output,'genome_dust.asnb')], stdout = FNULL, stderr = FNULL)
subprocess.call(['makeblastdb', '-in', input, '-dbtype', 'nucl', '-parse_seqids', '-mask_data', os.path.join(output, 'genome_dust.asnb'), '-out', os.path.join(output, 'genome')], stdout = FNULL, stderr = FNULL)
#okay, now run tblastn using uniprot proteins
subprocess.call(['tblastn', '-num_threads', str(args.cpus), '-db', os.path.join(output, 'genome'), '-query', query, '-max_target_seqs', '1', '-db_soft_mask', '11', '-threshold', '999', '-max_intron_length', args.maxIntron, '-evalue', '1e-5', '-outfmt', '6', '-out', os.path.join(output,'filter.tblastn.tab')], stdout = FNULL, stderr = FNULL)
#now parse through results, generating a list for exonerate function
with open(os.path.join(output, 'filter.tblastn.tab')) as input:
reader = csv.reader(input, delimiter='\t')
for cols in reader:
hit = cols[0] + '::' + cols[1]
if hit not in HitList:
HitList.append(hit)
if cols[1] not in Scaffolds:
Scaffolds.append(cols[1])
if cols[0] not in tBlastN:
tBlastN[cols[0]] = (cols[1]+":"+cols[8]+"-"+cols[9], cols[11], cols[10], 'NA', 'tBlastn')
def runExonerate(input):
global Missing
s = input.split('::')
if s[0].startswith('sp|'):
name = s[0].split("|")[1] + '_' + s[1]
else:
name = s[0].split()[0] + '_' + s[1]
query = os.path.join(tmpdir, name+'.fa')
with open(query, 'w') as output:
rec = record_dict[s[0]]
output.write(">%s\n%s\n" % (rec.id, rec.seq))
scaffold = s[1] + '.fasta'
scaffold = os.path.join(tmpdir, scaffold)
exonerate_out = 'exonerate_' + name + '.out'
exonerate_out = os.path.join(tmpdir, exonerate_out)
ryo = ">%qi|pident=%pi|%ti:%tcb-%tce|Exonerate-Partial\n%tcs\n"
with open(exonerate_out, 'w') as output4:
subprocess.call(['exonerate', '--model', 'p2g', '--showvulgar', 'no', '--showalignment', 'no', '--showquerygff', 'no', '--showtargetgff', 'no', '--maxintron', args.maxIntron, '--percent', '25', '--ryo', ryo , query, scaffold], stdout = output4)
os.remove(query)
#set up tmpdir
tmpdir = 'tmp_'+str(os.getpid())
os.makedirs(tmpdir)
#setup dictionary to hold summary results
AllResults = []
labels = []
#setup output files
FinalOut = args.out+'.proteins.fasta'
TextOut = args.out+'.hits.tsv'
SummaryOut = args.out+'.summary.csv'
with open(TextOut, 'w') as output:
output.write('Genome\tHMM-Model\tHit\tBitScore\tEvalue\tAlign-Len\tMethod\n')
for file in args.input:
#Split GBK into parts
base = file.rsplit('.', 1)[0]
if '/' in base:
base = base.split('/') [-1]
labels.append(base)
Proteins = os.path.join(tmpdir, base+'.proteins.fa')
Genome = os.path.join(tmpdir, base+'.genome.fa')
gb2output(file, Proteins, Genome)
#print status
print '----------------------------------------------'
print 'Working on %s' % base
#check number of HMMer models
Results = {}
HMMstat = os.path.join(tmpdir, 'hmmstat.txt')
if not os.path.isfile(HMMstat):
with open(HMMstat, 'w') as output:
subprocess.call(['hmmstat', args.hmm], stdout = output, stderr = FNULL)
HMMmodels = []
with open(HMMstat, 'rU') as input:
for line in input:
if line.startswith('\n'):
continue
if not line.startswith('#'):
cols = line.split(' ')
cols = filter(None, cols)
if not cols[1] in HMMmodels:
HMMmodels.append(cols[1])
print "Looking for %i protein HMM model(s)" % len(HMMmodels)
#check for annotated genome
Protsize = getSize(Proteins)
if Protsize > 300:
#load proteins into dictionary
protein_dict = SeqIO.to_dict(SeqIO.parse(Proteins, 'fasta'))
#do hmmer search of proteins
print "Scanning proteome using HMMsearch"
HMM = os.path.join(tmpdir, base+'.hmmsearch.txt')
subprocess.call(['hmmsearch', '-o', HMM, '--cpu', str(args.cpus), '-E', args.evalue, args.hmm, Proteins], stdout = FNULL, stderr = FNULL)
with open(HMM, 'rU') as results:
for qresult in SearchIO.parse(results, "hmmer3-text"):
query_length = qresult.seq_len #length of HMM model
hits = qresult.hits
num_hits = len(hits)
if num_hits > 0:
query = hits[0].id
hit = hits[0].query_id
score = hits[0].bitscore
evalue = hits[0].evalue
num_hsps = len(hits[0].hsps)
aln_length = 0
for x in range(0,num_hsps):
aln_length += hits[0].hsps[x].aln_span
if hit not in Results:
Results[hit] = (query, score, evalue, aln_length, 'Hmmer3')
with open(FinalOut, 'ab') as output:
for k,v in Results.items():
description = base+'|'+k+"|"+v[0]+"|evalue="+str(v[2])+"|HMMer3-Complete"
rec = protein_dict[v[0]]
rec.id = description
rec.description = ''
rec.name = ''
SeqIO.write(rec, output, 'fasta')
else:
print "No annotation found in genome, will search DNA"
notfound = []
for i in HMMmodels:
if not i in Results:
notfound.append(i)
if len(notfound) > 0: #have to do some more work here for these to be sure they really don't exist
#get consensus from hmm model
print "%i missing models [%s]" % (len(notfound), ', '.join(notfound))
Consensus = os.path.join(tmpdir, 'missing.consensi.tmp')
Consensi = os.path.join(tmpdir, 'missing.consensi.fa')
with open(Consensus, 'w') as output1:
subprocess.call(['hmmemit', '-c', args.hmm], stdout = output1, stderr = FNULL)
with open(Consensi, 'w') as output2:
with open(Consensus, 'rU') as input:
for rec in SeqIO.parse(input, 'fasta'):
rec.id = rec.id.replace('-consensus', '')
rec.name = ''
rec.description = ''
if rec.id in notfound:
SeqIO.write(rec, output2, 'fasta')
#now run tblastn against genome with those notfound
Blast = os.path.join(tmpdir, 'tblastn.blast.tab')
print "Try to recover models using tBlastn/Exonerate"
tblastnFilter(Genome, Consensi, args.cpus, tmpdir)
print "found %i preliminary tBlastn alignments" % (len(HitList))
if len(HitList) != 0:
#split genome fasta into individual scaffolds
with open(Genome, 'rU') as input:
for record in SeqIO.parse(input, "fasta"):
if record.id in Scaffolds:
SeqIO.write(record, os.path.join(tmpdir, record.id + ".fasta"), "fasta")
#Now run exonerate on hits
print "Polishing alignments with Exonerate"
record_dict = SeqIO.to_dict(SeqIO.parse(Consensi, 'fasta'))
p = multiprocessing.Pool(args.cpus)
rs = p.map_async(runExonerate, HitList)
p.close()
while (True):
if (rs.ready()): break
#now collect all exonerate results into one
print "Saving hits to file"
Exonerate = os.path.join(tmpdir, 'exonerate.output.txt')
skip = ['Command line', '%', ' ','tmp_', '\n', '--', 'Hostname']
with open(Exonerate, 'w') as output5:
for root, dirs, files in os.walk(tmpdir):
for file in files:
if file.endswith('.out'):
filename = os.path.join(root, file)
with open(filename, 'rU') as readfile:
for line in group_by_heading(readfile):
for i in line:
if not any(i.startswith(x) for x in skip):
i = i.replace('^>', '>'+base+'|')
output5.write(i)
with open(FinalOut, 'ab') as output6:
with open(Exonerate, 'rU') as input:
for rec in SeqIO.parse(input, 'fasta'):
info = rec.id.split('|')
if not info[0] in Results:
Results[info[0]] = (info[2], 'NA', info[1], 'NA', 'Exonerate')
output6.write('>%s\n%s\n' % (rec.id, rec.seq.translate()))
#clean up tmp folder
for root, dirs, files in os.walk(tmpdir):
for file in files:
if file.endswith('.out') or file.endswith('.fasta'):
os.remove(os.path.join(root, file))
else:
print "No potential hits found"
for i in HMMmodels:
if not i in Results:
if i in tBlastN:
Results[i] = tBlastN.get(i)
else:
print 'HMM-model '+i+' not found'
Results[i] = ('None found', 'NA', 'NA', 'NA', 'NA')
else:
print "Saving hits to file"
with open(TextOut, 'ab') as output:
for k,v in natsorted(Results.items()):
output.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % (base, k, v[0], v[1], v[2], v[3], v[4]))
SumResults = {}
for k,v in Results.items():
SumResults[k] = v[0]
AllResults.append(SumResults)
print '----------------------------------------------'
df = pd.DataFrame(AllResults, index=labels)
df.to_csv(SummaryOut)
print 'Summary table saved to %s' % SummaryOut
if not args.debug:
shutil.rmtree(tmpdir)