forked from Dao-AILab/flash-attention
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathflash_attn_interface.py
563 lines (521 loc) · 23.5 KB
/
flash_attn_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright (c) 2023, Tri Dao.
from typing import Optional, Union, Tuple, List
import torch
import torch.nn as nn
# isort: off
# We need to import the CUDA kernels after importing torch
# Use relative import to support build-from-source installation in vLLM
try:
from . import _vllm_fa2_C # noqa: F401
FA2_UNAVAILABLE_REASON = None
FA2_AVAILABLE = True
except ImportError as e:
FA2_UNAVAILABLE_REASON = str(e)
FA2_AVAILABLE = False
try:
from . import _vllm_fa3_C # noqa: F401
FA3_UNAVAILABLE_REASON = None
FA3_AVAILABLE = True
except ImportError as e:
FA3_UNAVAILABLE_REASON = str(e)
FA3_AVAILABLE = False
# isort: on
DEFAULT_FA_VERSION = 2
def _is_fa2_supported(device = None) -> Tuple[bool, Optional[str]]:
if not FA2_AVAILABLE:
return False, f"FA2 is unavaible due to: {FA2_UNAVAILABLE_REASON}"
if torch.cuda.get_device_capability(device)[0] < 8:
return False, \
"FA2 is only supported on devices with compute capability >= 8"
return True, None
def _is_fa3_supported(device = None) -> Tuple[bool, Optional[str]]:
if not FA3_AVAILABLE:
return False, f"FA3 is unavaible due to: {FA3_UNAVAILABLE_REASON}"
if torch.cuda.get_device_capability(device)[0] < 8 \
or torch.cuda.get_device_capability(device) == (8, 6) \
or torch.cuda.get_device_capability(device) == (8, 9):
return False, \
"FA3 is only supported on devices with compute capability >= 8" \
" excluding 8.6 and 8.9"
return True, None
def is_fa_version_supported(fa_version: int, device = None) -> bool:
assert fa_version in [2, 3], f"Unsupported FA version: {fa_version}"
if fa_version == 2:
return _is_fa2_supported(device)[0]
elif fa_version == 3:
return _is_fa3_supported(device)[0]
def fa_version_unsupported_reason(fa_version: int, device = None) \
-> Optional[str]:
assert fa_version in [2, 3], f"Unsupported FA version: {fa_version}"
if fa_version == 2:
return _is_fa2_supported(device)[1]
elif fa_version == 3:
return _is_fa3_supported(device)[1]
#
# For vLLM we only care about `flash_attn_varlen_func` and
# `flash_attn_with_kvcache` so we only maintain wrappers for these two.
#
def maybe_contiguous(x):
return x.contiguous() if x is not None and x.stride(-1) != 1 else x
def flash_attn_varlen_func(
q,
k,
v,
max_seqlen_q,
cu_seqlens_q,
max_seqlen_k,
cu_seqlens_k=None, # only used for non-paged prefill
seqused_k=None,
q_v=None,
dropout_p=0.0,
softmax_scale=None,
causal=False,
window_size: Optional[List[int]] = None,
softcap=0.0, # 0.0 means deactivated
alibi_slopes=None,
deterministic=False,
return_attn_probs=False,
block_table=None,
return_softmax_lse=False,
out=None,
fa_version: int = DEFAULT_FA_VERSION,
):
"""dropout_p should be set to 0.0 during evaluation
Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1 1 1 1 0
1 1 1 1 1
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
0 0
0 0
0 0
1 0
1 1
If the row of the mask is all zero, the output will be zero.
If window_size != (-1, -1), implements sliding window local attention. Query at position i
will only attend to keys between
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
softcap: float. Anything > 0 activates softcapping attention.
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
is added to the attention score of query i and key j.
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
which is slightly slower and uses more memory. The forward pass is always deterministic.
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_softmax_lse=True]: (nheads, total_q_seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
"""
assert cu_seqlens_k is not None or seqused_k is not None, \
"cu_seqlens_k or seqused_k must be provided"
assert cu_seqlens_k is None or seqused_k is None, \
"cu_seqlens_k and seqused_k cannot be provided at the same time"
assert block_table is None or seqused_k is not None, \
"seqused_k must be provided if block_table is provided"
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
# custom op does not support non-tuple input
real_window_size: Tuple[int, int]
if window_size is None:
real_window_size = (-1, -1)
else:
assert len(window_size) == 2
real_window_size = (window_size[0], window_size[1])
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
dummy_cu_seqlens_k = torch.empty_like(cu_seqlens_q)
if fa_version == 2:
out, softmax_lse = torch.ops._vllm_fa2_C.varlen_fwd(
q, k, v,
out,
cu_seqlens_q,
# cu_seqlens_k not used since we use seqused_k, but flash_api.cpp
# still wants it so we pass all zeros
dummy_cu_seqlens_k if cu_seqlens_k is None else cu_seqlens_k,
seqused_k,
None,
block_table,
alibi_slopes,
max_seqlen_q,
max_seqlen_k,
dropout_p,
softmax_scale,
False,
causal,
real_window_size[0],
real_window_size[1],
softcap,
return_softmax_lse and dropout_p > 0,
None,
)
elif fa_version == 3:
out, softmax_lse, _, _ = torch.ops._vllm_fa3_C.fwd(
q, k, v,
None, None, # k_new, v_new
q_v, #
out,
cu_seqlens_q,
cu_seqlens_k, # cu_seqlens_k
None, # cu_seqlens_k_new
None, seqused_k, # seqused_q, seqused_k
max_seqlen_q, max_seqlen_k,
block_table,
alibi_slopes,
None, # kv_batch_idx
None, None, # rotary_cos, rotary_sin
None, None, None, # q_descale, k_descale, v_descale
softmax_scale,
causal,
real_window_size[0], real_window_size[1],
0, # sink_token_length
softcap,
True, # rotary_interleaved
0, # num_splits
None, # pack_gqa
0, # sm_margin
)
else:
raise ValueError(f"Unsupported FA version: {fa_version}")
return (out, softmax_lse) if return_softmax_lse else out
def flash_attn_with_kvcache(
q,
k_cache,
v_cache,
k=None,
v=None,
rotary_cos=None,
rotary_sin=None,
cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
cache_batch_idx: Optional[torch.Tensor] = None,
cache_leftpad: Optional[torch.Tensor] = None,
block_table: Optional[torch.Tensor] = None,
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
softcap=0.0, # 0.0 means deactivated
rotary_interleaved=True,
alibi_slopes=None,
num_splits=0,
return_softmax_lse=False,
*,
out=None,
fa_version: int = DEFAULT_FA_VERSION,
):
"""
If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
the previous step, and update them with the new keys/values from the current step, and do
attention with the updated cache, all in 1 kernel.
If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
For example, the KV cache could be pre-allocated with the max sequence length, and you can use
cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1 1 1 1 0
1 1 1 1 1
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
0 0
0 0
0 0
1 0
1 1
If the row of the mask is all zero, the output will be zero.
If window_size != (-1, -1), implements sliding window local attention. Query at position i
will only attend to keys between
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
Note: Does not support backward pass.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
page_block_size must be a multiple of 256.
v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
k with k_cache, starting at the indices specified by cache_seqlens.
v [optional]: (batch_size, seqlen_new, nheads_k, headdim). Similar to k.
rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
KV cache.
block_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
If the indices are not distinct, and k and v are provided, the values updated in the cache
might come from any of the duplicate indices.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
softcap: float. Anything > 0 activates softcapping attention.
rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
(i.e. GPT-NeoX style).
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
is added to the attention score of query i and key j.
num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
to automatically determine the number of splits.
Don't change this unless you know what you are doing.
return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
"""
assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
if cache_seqlens is not None and isinstance(cache_seqlens, int):
cache_seqlens = torch.full(
(k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
)
cache_seqlens = maybe_contiguous(cache_seqlens)
cache_batch_idx = maybe_contiguous(cache_batch_idx)
block_table = maybe_contiguous(block_table)
if fa_version == 2:
out, softmax_lse = torch.ops._vllm_fa2_C.fwd_kvcache(
q, k_cache, v_cache,
k, v, # k_new, v_new
cache_seqlens,
rotary_cos,
rotary_sin,
cache_batch_idx,
cache_leftpad,
block_table,
alibi_slopes,
out,
softmax_scale,
causal,
window_size[0],
window_size[1],
softcap,
rotary_interleaved,
num_splits,
)
elif fa_version == 3:
out, softmax_lse, _, _ = torch.ops._vllm_fa3_C.fwd(
q, k_cache, v_cache, # q, k, v
k, v, # k_new, v_new
None, # q_v
out,
None, None, # cu_seqlens_q, cu_seqlens_k
None, # cu_seqlens_k_new
None, cache_seqlens, # seqused_q, seqused_k
None, None, # max_seqlen_q, max_seqlen_k
block_table,
alibi_slopes,
cache_batch_idx, # kv_batch_idx
None, None, # rotary_cos, rotary_sin
None, None, None, # q_descale, k_descale, v_descale
softmax_scale,
causal,
window_size[0], window_size[1],
0, # sink_token_length
softcap,
True, # rotary_interleaved
num_splits, # num_splits
None, # pack_gqa
0, # sm_margin
)
else:
raise ValueError(f"Unsupported FA version: {fa_version}")
return (out, softmax_lse) if return_softmax_lse else out
def sparse_attn_func(
q,
k,
v,
block_count,
block_offset,
column_count,
column_index,
dropout_p=0.0,
softmax_scale=None,
causal=False,
softcap=0.0, # 0.0 means deactivated
alibi_slopes=None,
deterministic=False,
return_attn_probs=False,
*,
return_softmax_lse=False,
out=None,
):
"""Compute attention with vertical and slash sparsity patterns.
Most Arguments are the same with the flash_attn_func interface, except for 4 extra args:
block_count and block_offset for slash sparsity patterns, and
column_count and column_index for vertical sparsity patterns.
For more details please refer to Appendix C.4.2 of paper https://arxiv.org/abs/2407.02490.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
k: (batch_size, seqlen, nheads_k, headdim)
v: (batch_size, seqlen, nheads_k, headdim)
block_count: (batch_size, nheads, cdiv(seqlen, BLOCK_M))
block_offset: (batch_size, nheads, cdiv(seqlen, BLOCK_M), NNZ_S)
column_count: (batch_size, nheads, cdiv(seqlen, BLOCK_M))
column_index: (batch_size, nheads, cdiv(seqlen, BLOCK_M), NNZ_V)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
is added to the attention score of query i and key j.
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
which is slightly slower and uses more memory. The forward pass is always deterministic.
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
"""
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, softmax_lse = torch.ops._vllm_fa2_C.fwd_sparse(
q,
k,
v,
block_count,
block_offset,
column_count,
column_index,
out,
alibi_slopes,
dropout_p,
softmax_scale,
causal,
softcap,
return_attn_probs and dropout_p > 0,
None,
)
return (out, softmax_lse) if return_softmax_lse else out
def sparse_attn_varlen_func(
q,
k,
v,
block_count,
block_offset,
column_count,
column_index,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
dropout_p=0.0,
softmax_scale=None,
causal=False,
softcap=0.0, # 0.0 means deactivated
alibi_slopes=None,
deterministic=False,
return_attn_probs=False,
*,
return_softmax_lse=False,
out=None,
):
"""Compute attention with vertical and slash sparsity patterns.
Most Arguments are the same with the flash_attn_varlen_func interface, except for 4 extra args:
block_count and block_offset for slash sparsity patterns, and
column_count and column_index for vertical sparsity patterns.
For more details please refer to Appendix C.4.2 of paper https://arxiv.org/abs/2407.02490.
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
block_count: (batch_size, nheads, cdiv(seqlen, BLOCK_M))
block_offset: (batch_size, nheads, cdiv(seqlen, BLOCK_M), NNZ_S)
column_count: (batch_size, nheads, cdiv(seqlen, BLOCK_M))
column_index: (batch_size, nheads, cdiv(seqlen, BLOCK_M), NNZ_V)
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
softcap: float. Anything > 0 activates softcapping attention.
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
is added to the attention score of query i and key j.
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
which is slightly slower and uses more memory. The forward pass is always deterministic.
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_softmax_lse=True]: (nheads, total_q_seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
"""
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, softmax_lse = torch.ops._vllm_fa2_C.varlen_fwd_sparse(
q,
k,
v,
block_count,
block_offset,
column_count,
column_index,
out,
cu_seqlens_q,
cu_seqlens_k,
None,
alibi_slopes,
max_seqlen_q,
max_seqlen_k,
dropout_p,
softmax_scale,
False,
causal,
softcap,
return_attn_probs and dropout_p > 0,
None,
)
return (out, softmax_lse) if return_softmax_lse else out