-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathmulti_step_model_runner.py
907 lines (763 loc) · 38.3 KB
/
multi_step_model_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
import dataclasses
import functools
from dataclasses import dataclass, field
from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple,
Union)
import torch
from vllm.distributed import get_pp_group
from vllm.logger import init_logger
from vllm.model_executor.layers.sampler import (PromptLogprobs, SampleLogprobs,
SamplerOutput,
SamplingMetadata, get_logprobs,
get_pythonized_sample_results)
from vllm.sequence import (CompletionSequenceGroupOutput, IntermediateTensors,
Logprob, SequenceGroupMetadata, SequenceOutput)
from vllm.utils import PyObjectCache, async_tensor_h2d, current_stream
from vllm.worker.model_runner import (GPUModelRunnerBase,
ModelInputForGPUWithSamplingMetadata)
from vllm.worker.model_runner_base import (
BroadcastableModelInput, _init_attn_metadata_from_tensor_dict,
_init_frozen_model_input_from_tensor_dict,
_init_sampling_metadata_from_tensor_dict)
from ..model_executor.model_loader.tensorizer import TensorizerConfig
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
logger = init_logger(__name__)
MULTI_STEP_ATTENTION_BACKENDS = [
"FLASH_ATTN", "ROCM_FLASH", "FLASHINFER", "NO_ATTENTION"
]
MULTI_STEP_CHUNKED_PREFILL_ATTENTION_BACKENDS = ["FLASH_ATTN"]
def _get_supported_attention_backends(chunked_prefill_enabled: bool) \
-> List[str]:
if chunked_prefill_enabled:
return MULTI_STEP_CHUNKED_PREFILL_ATTENTION_BACKENDS
else:
return MULTI_STEP_ATTENTION_BACKENDS
def seq_output_builder():
return SequenceOutput(
0, 0,
{0: Logprob(logprob=float('inf'), rank=None, decoded_token=None)})
def completion_seq_group_output_builder():
return CompletionSequenceGroupOutput([], None)
# Used by pythonization to reduce python object allocations
class PythonizationCache:
def __init__(self):
self.cached_seq_output = PyObjectCache(seq_output_builder)
self.cached_completion_seq_group_output = PyObjectCache(
completion_seq_group_output_builder)
def reset(self):
self.cached_seq_output.reset()
self.cached_completion_seq_group_output.reset()
@dataclass
class ModelOutput:
"""The output of a single model forward pass.
The sampler_output_ready_event is set when the tensors in
sampler_output are ready (the model+sampler forward pass has
completed). We use the event to synchronize the GPU->CPU transfer,
which we want to only run when the data has been written to the
GPU tensors. Until the event is ready, the tensors in sampler_output
will have garbage data.
There are two scenarios:
1. The output tensors are ready and we can pythonize them immediately.
2. The output tensors are not ready and we need to wait for the event to be
ready.
"""
sampler_output: SamplerOutput
sampler_output_ready_event: torch.cuda.Event
sampled_token_ids: Optional[torch.Tensor] = None
pythonized: bool = False
# On-device tensor containing the logprobs of each token.
logprobs: Optional["torch.Tensor"] = None
pythonization_cache: Optional[PythonizationCache] = None
def pythonize(self, input_metadata: "StatefulModelInput",
copy_stream: torch.cuda.Stream,
pinned_sampled_token_buffer: torch.Tensor) -> None:
"""Pythonize the output. Blocking."""
if not self.pythonized:
self._pythonize_sampler_output(input_metadata, copy_stream,
pinned_sampled_token_buffer, True)
self.pythonized = True
def maybe_pythonize(self, input_metadata: "StatefulModelInput",
copy_stream: torch.cuda.Stream,
pinned_sampled_token_buffer: torch.Tensor) -> None:
"""Pythonize the output if ready, else return None. Non-blocking."""
if not self.pythonized:
self.pythonized = self._pythonize_sampler_output(
input_metadata, copy_stream, pinned_sampled_token_buffer,
False)
def _pythonize_sampler_output(self, input_metadata: "StatefulModelInput",
copy_stream: torch.cuda.Stream,
pinned_sampled_token_buffer: torch.Tensor,
blocking: bool) -> bool:
"""
If blocking is set, will block until the forward pass for the output is
ready and pythonize the output. Upon completing Pythonization, erases
self.logprobs (note that a non-blocking call that is performed when
the sampler output is not yet ready, will not erase self.logprobs.)
"""
assert self.sampled_token_ids is not None
if not blocking and not self.sampler_output_ready_event.query():
return False
if blocking:
self.sampler_output_ready_event.synchronize()
with torch.cuda.stream(copy_stream):
_pythonize_sampler_output(input_metadata, self.sampler_output,
pinned_sampled_token_buffer,
self.sampled_token_ids, self.logprobs,
self.pythonization_cache)
# Erase the logprobs GPU-side tensor.
# Note that although _pythonize_sampler_output() runs in its
# own CUDA stream, nonetheless _pythonize_sampler_output()
# cannot return until Pythonization is complete; therefore
# we know that by the time the CPU reaches this point,
# `self.logprobs` is no longer needed.
self.logprobs = None
return True
@dataclass(frozen=False)
class StatefulModelInput(BroadcastableModelInput):
# actual frozen model input dataclass passed to _base_model_runner
frozen_model_input: Optional[ModelInputForGPUWithSamplingMetadata] = None
# list of model outputs for each step, may not be all pythonized
cached_outputs: List[ModelOutput] = field(default_factory=list)
# used to pass sampled token ids from the last step to the current step for
# TP workers. Used to append to end of outputs and used by advance_step
last_sampled_token_ids: Optional[torch.Tensor] = None
current_step: int = 0
is_multi_step: bool = True
is_last_step: bool = False
is_first_multi_step: bool = False
base_output_proc_callback: Optional[Callable] = None
# ping-pong data structures for multi-step to wait on the previous step
step_cuda_events: List[torch.cuda.Event] = field(
default_factory=lambda: [torch.cuda.Event(blocking=True)] * 2)
num_seqs: int = -1
num_queries: int = -1
num_single_step_prefills: int = 0
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
assert self.frozen_model_input is not None
tensor_dict = self.frozen_model_input.as_broadcastable_tensor_dict()
new_tensor_dict = {
'last_sampled_token_ids': self.last_sampled_token_ids,
'current_step': self.current_step,
'is_multi_step': self.is_multi_step,
'is_last_step': self.is_last_step,
'is_first_multi_step': self.is_first_multi_step,
'num_seqs': self.num_seqs,
'num_queries': self.num_queries,
'num_single_step_prefills': self.num_single_step_prefills,
}
tensor_dict.update(new_tensor_dict)
return tensor_dict
@classmethod
def from_broadcasted_tensor_dict(
cls,
tensor_dict: Dict[str, Any],
attn_backend: Optional["AttentionBackend"] = None,
) -> "StatefulModelInput":
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
if attn_backend is not None:
tensor_dict = _init_attn_metadata_from_tensor_dict(
attn_backend, tensor_dict)
tensor_dict = _init_frozen_model_input_from_tensor_dict(
ModelInputForGPUWithSamplingMetadata, tensor_dict)
return cls(**tensor_dict)
def record_step_event(self, current_stream: torch.cuda.Stream):
# record the event for the current step so that the next step can sync
# on it. We modulo by 2 to keep the events in a circular buffer and
# support any attn backends that may be supported in the future. ie
# Flashinfer would want two DecodeWrappers to overlap the CPU and GPU.
self.step_cuda_events[self.current_step & 1] = \
torch.cuda.Event(blocking=True)
self.step_cuda_events[self.current_step & 1].record(current_stream)
def wait_previous_step(self):
# These cuda events are an explicit synchronization to ensure that
# advance_step() (for other attn backends that may be supported in the
# future) do not clobber any data structures that is also used by any
# enqueued forwards steps. For distributed case, only a single event is
# needed, but for single GPU case, since we can let the CPU run much
# further ahead, two events allow us to overlap the advance_step with
# the previous forward (ie using two DecodeWrappers for flashinfer
# backend)
self.step_cuda_events[(self.current_step + 1) & 1].wait()
def add_sampler_output(self,
sampler_output: SamplerOutput,
sampled_token_ids: Optional[torch.Tensor] = None):
self.cached_outputs.append(
ModelOutput(sampler_output=sampler_output,
sampler_output_ready_event=None,
sampled_token_ids=sampled_token_ids,
pythonized=False))
def maybe_advance_sampling_metadata(self, device: str, pin_memory: bool):
"""
sampling_metadata.selected_token_indices is constructed for the
first-step in Multi-Step. However, when chunked-prefill is enabled with
multi-step, the scheduled prompts are fully processed in the
first-step and are processed as decodes in the rest of the steps.
This function updates the sampling_metadata.selected_token_indices
to account for this conversion.
Example:
Let 2 prompts and 2 decodes be scheduled together. Let the
num-tokens to process for the 2 prompts be 5 and 8 respectively.
In that case, sampling_metadata.sampled_token_indices will be,
[4, 12, 13, 14] as it is constructed for the first-step in
multi-step.
However, the prompts turns to decodes after the first-step
and the num-tokens for the previously-prompt sequences will
be 1 and 1 as they are decodes now. The self.sampled_token_indices
must be updated to [0,1,2,3].
"""
assert self.current_step == 1 and self.num_single_step_prefills > 0
if not get_pp_group().is_last_rank:
return
assert self.frozen_model_input is not None
assert self.frozen_model_input.sampling_metadata is not None
self.frozen_model_input.sampling_metadata.selected_token_indices = \
async_tensor_h2d(list(range(self.num_queries)),
dtype=torch.long,
target_device=device,
pin_memory=pin_memory)
def maybe_advance_frozen_model_input(self, device: str, pin_memory: bool):
"""
Advancing the datastructures of StatefulModelInput::frozen_model_input
is only required when prefills are scheduled with decodes to run in
multi-step. This advancement/correction is required to account for
the conversion of Prefills to Decodes after the first multi-step.
"""
if self.current_step != 1 or self.num_single_step_prefills == 0:
return
assert self.frozen_model_input is not None
fmi = self.frozen_model_input
# Truncate input_tokens
assert fmi.input_tokens is not None
assert fmi.input_tokens.shape[0] >= self.num_seqs
fmi_new_input_tokens: torch.Tensor = fmi.input_tokens[:self.num_seqs]
# Update frozen_model_input::input_positons.
assert fmi.input_positions is not None
assert fmi.input_positions.shape[0] >= self.num_seqs
fmi_new_input_positions: torch.Tensor = fmi.input_positions[:self.
num_seqs]
# Assert unsupported
assert fmi.lora_mapping is None
assert fmi.lora_requests is not None
assert len(fmi.lora_requests) == 0
assert fmi.attn_metadata is not None
assert fmi.prompt_adapter_mapping is None
assert fmi.prompt_adapter_requests is not None
assert len(fmi.prompt_adapter_requests) == 0
assert fmi.multi_modal_kwargs is not None
assert len(fmi.multi_modal_kwargs) == 0
self.frozen_model_input = dataclasses.replace(
self.frozen_model_input,
input_tokens=fmi_new_input_tokens,
input_positions=fmi_new_input_positions)
self.maybe_advance_sampling_metadata(device, pin_memory)
# MutableModelInputForGPUWithMultiStepMetadata is not subclass of
# ModelInputForGPU but it wraps the actual input dataclass and adds multi-step
# metadata
# mypy: disable-error-code=type-var
class MultiStepModelRunner(GPUModelRunnerBase[StatefulModelInput]):
# mypy: enable-error-code=type-var
def __init__(self, base_model_runner: GPUModelRunnerBase, *args, **kwargs):
super().__init__(*args, **kwargs)
# Check attention backend support.
supported_attention_backends: List[str] = \
_get_supported_attention_backends(
self.scheduler_config.chunked_prefill_enabled)
if self.attn_backend.get_name() not in supported_attention_backends:
ms_config_str: str = "Multi-Step + Chunked-Prefill" \
if self.scheduler_config.chunked_prefill_enabled \
else "Multi-Step"
raise ValueError(
f"{ms_config_str} not supported for attention backend: "
f"{self.attn_backend.get_name()}. Set VLLM_ATTENTION_BACKEND "
f"to a value from {supported_attention_backends}.")
# uses the base model runner to execute the model and wraps it with
# multi-step logic
self._base_model_runner: GPUModelRunnerBase = base_model_runner
self.is_multi_step = self.scheduler_config.is_multi_step
self.pinned_sampled_token_ids: Optional[torch.Tensor] = None
# Using the PythonizationCache in Pipeline-Parallel clobbers the
# SequenceOutput and CompletionSequenceGroupOutput object.
# When cache-reset happens at the last step of a multi-step
# execution, there may be other on-going single-step/multi-step
# executions. The current caching implementation does not check
# for this.
self.pythonization_cache = PythonizationCache() \
if self.parallel_config.pipeline_parallel_size == 1 else None
@functools.cached_property
def _copy_stream(self):
# used to copy tensors from GPU to CPU asynchronously
return torch.cuda.Stream()
def make_model_input_from_broadcasted_tensor_dict(
self, tensor_dict: Dict[str, Any]) -> StatefulModelInput:
model_input = (StatefulModelInput.from_broadcasted_tensor_dict(
tensor_dict,
attn_backend=self.attn_backend,
))
return model_input
def prepare_model_input(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
virtual_engine: int = 0,
finished_requests_ids: Optional[List[str]] = None
) -> StatefulModelInput:
frozen_model_input: ModelInputForGPUWithSamplingMetadata = \
self._base_model_runner.prepare_model_input(
seq_group_metadata_list,
virtual_engine,
finished_requests_ids)
assert frozen_model_input.query_lens is not None
assert frozen_model_input.seq_lens is not None
assert frozen_model_input.attn_metadata is not None
num_queries = len(frozen_model_input.query_lens)
num_seqs = len(frozen_model_input.seq_lens)
num_single_step_prefills = frozen_model_input.attn_metadata.num_prefills
model_input = StatefulModelInput(
frozen_model_input=frozen_model_input,
num_seqs=num_seqs,
num_queries=num_queries,
num_single_step_prefills=num_single_step_prefills)
return model_input
def _async_process_outputs(self, model_input: StatefulModelInput,
output_proc_callback: Callable):
# Proceed with pythonization and output_proc in order.
# Stop on the first one that fails to pythonize
output_proc_callback()
cont = True
for step_num, model_output in enumerate(model_input.cached_outputs):
if not model_output.pythonized:
model_output.maybe_pythonize(model_input, self._copy_stream,
self.pinned_sampled_token_ids)
if model_output.pythonized:
ctx = output_proc_callback.keywords["ctx"]
ctx.append_output(
outputs=[model_output.sampler_output],
seq_group_metadata_list=ctx.seq_group_metadata_list,
scheduler_outputs=ctx.scheduler_outputs,
is_async=False,
is_last_step=False,
is_first_step_output=step_num == 0)
output_proc_callback()
else:
cont = False
if not cont:
break
def _final_process_outputs(
self, model_input: StatefulModelInput,
output_proc_callback: Optional[Callable]) -> List[SamplerOutput]:
assert model_input.frozen_model_input is not None
has_async_callback = output_proc_callback is not None
outputs = []
for step_num, output in enumerate(model_input.cached_outputs):
is_last_step = step_num == len(model_input.cached_outputs) - 1
# For non-async case:
# -- We simply add the outputs
# For async case:
# -- Invoke callback, pythonize, add to callback queue and repeat
# -- For last output, just add to callback queue
if has_async_callback:
assert output_proc_callback is not None
# Invoke callback before pythonize (to overlap with GPU)
output_proc_callback()
# Pythonize
if not output.pythonized:
output.pythonize(model_input, self._copy_stream,
self.pinned_sampled_token_ids)
# For non last step, add to callback queue to chain
# callbacks=>pythonize pairs (for GPU overlap)
if not is_last_step:
ctx = output_proc_callback.keywords[ # type: ignore
"ctx"] # type: ignore
ctx.append_output(
outputs=[output.sampler_output],
seq_group_metadata_list=ctx.
seq_group_metadata_list,
scheduler_outputs=ctx.scheduler_outputs,
is_async=False,
is_last_step=False,
is_first_step_output=step_num == 0)
else:
outputs.append(output.sampler_output)
else:
output.pythonize(model_input, self._copy_stream,
self.pinned_sampled_token_ids)
outputs.append(output.sampler_output)
return outputs
@torch.inference_mode()
def execute_model(
self,
model_input: StatefulModelInput,
kv_caches: List[torch.Tensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
num_steps: int = 1,
) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
"""
Execute the model for a single step and update multi-step
metadata
"""
assert num_steps == 1, "MultiStepModelRunner only supports num_steps=1"
frozen_model_input = model_input.frozen_model_input
assert frozen_model_input is not None
# path for warm up runs
if not model_input.is_multi_step:
return self._base_model_runner.execute_model(
frozen_model_input, kv_caches, intermediate_tensors, num_steps)
# make sure we skip the sampler on the lask rank and only pythonize
# if CPU is ahead.
if self.is_driver_worker and get_pp_group().is_last_rank:
if self.pinned_sampled_token_ids is None:
self.pinned_sampled_token_ids = torch.zeros(
(self.scheduler_config.max_num_seqs, 1),
dtype=torch.long,
device="cpu",
pin_memory=True)
self._base_model_runner.model.sampler.include_gpu_probs_tensor = (
True)
if frozen_model_input.sampling_metadata:
frozen_model_input.sampling_metadata.skip_sampler_cpu_output = (
True)
# some pre-execute model logic for multi-step:
# - if it's the first step, we need to reset the sampling tensors
# - if it's not the first step, we need to advance the step using the
# appended sampler output from last iteration
# - also maybe pythonize if CPU is ahead of GPU
stream = current_stream()
if not model_input.is_first_multi_step:
# Explicitly block on the previous step's forward to make sure we
# don't clobber any GPU tensors still in use.
# This is not needed for flashattn backend, but for other attn
# backends such as flashinfer that performs extra CPU operations on
# input metadata we may need to synchronize any CPU operations that
# might clobber enqueued forwards. (prevents CPU from running too
# far ahead if needed)
model_input.wait_previous_step()
model_input = self._advance_step(
model_input, model_input.cached_outputs[-1].sampler_output)
# frozen_model_input may have been updated
frozen_model_input = model_input.frozen_model_input
assert frozen_model_input is not None
if model_input.base_output_proc_callback is None:
assert frozen_model_input is not None
model_input.base_output_proc_callback = \
frozen_model_input.async_callback
if frozen_model_input.async_callback is not None:
assert model_input.base_output_proc_callback is not None
async_callback = functools.partial(
self._async_process_outputs,
model_input=model_input,
output_proc_callback=model_input.base_output_proc_callback)
model_input.frozen_model_input = dataclasses.replace( # type: ignore
model_input.frozen_model_input,
async_callback=async_callback)
# Update the local instance
frozen_model_input = model_input.frozen_model_input
assert frozen_model_input is not None
# Execute the model
output = self._base_model_runner.execute_model(frozen_model_input,
kv_caches,
intermediate_tensors,
num_steps=1)
# record the event for the current step so that the next step can sync
model_input.record_step_event(stream)
if get_pp_group().is_last_rank and self.is_driver_worker:
assert isinstance(output, list)
assert len(
output
) == 1, "MultiStepModelRunner requires single-step base_models"
# event for the pythonization so that we only pythonize if the
# tensors are ready. May be able to be combined with the step event
output_ready_event = torch.cuda.Event()
output_ready_event.record(stream)
if self.parallel_config.pipeline_parallel_size > 1:
output[0].sampled_token_ids_cpu = output[
0].sampled_token_ids.cpu()
model_input.cached_outputs.append(
ModelOutput(output[0], output_ready_event,
output[0].sampled_token_ids, False,
output[0].logprobs, self.pythonization_cache))
# These GPU tensors are not required by multi-step;
# erase them to ensure they are not pythonized or
# transferred to CPU
output[0].sampled_token_ids = None
output[0].sampled_token_probs = None
output[0].logprobs = None
# Pythonize the output if CPU is ahead and the previous step is
# ready.
if frozen_model_input.async_callback is None:
for model_output in model_input.cached_outputs:
model_output.maybe_pythonize(model_input,
self._copy_stream,
self.pinned_sampled_token_ids)
model_input.current_step += 1
if not get_pp_group().is_last_rank:
# Should be IntermediateTensors
assert isinstance(output, IntermediateTensors)
return output
if not self.is_driver_worker:
return []
# Pythonize the output and block if needed since it is the last step
if model_input.is_last_step:
outputs = self._final_process_outputs(
model_input, model_input.base_output_proc_callback)
if self.pythonization_cache:
self.pythonization_cache.reset()
return outputs
# should be [SamplerOutput]
return output
def _update_sampling_metadata(self, sampling_metadata: SamplingMetadata,
num_seqs: Optional[int], num_queries: int):
assert sampling_metadata.num_prompts == 0
assert len(sampling_metadata.seq_groups) == num_queries
assert sampling_metadata.selected_token_indices.shape == (
num_queries, )
# assert sampling_metadata.categorized_sample_indices == TODO: Add if needed # noqa: E501
# Verify that all sequences are decodes
for i in range(num_queries):
seq_group = sampling_metadata.seq_groups[i]
assert seq_group.is_prompt is False # No prompt
assert seq_group.prompt_logprob_indices == [] # No prompt
assert seq_group.sample_indices == [i] # Simple
assert seq_group.seq_len is None # Decode
assert seq_group.query_len is None # Decode
def _advance_step(self, model_input: StatefulModelInput,
out: SamplerOutput) -> StatefulModelInput:
model_input.maybe_advance_frozen_model_input(self.device,
self.pin_memory)
frozen_model_input = model_input.frozen_model_input
assert frozen_model_input is not None
assert frozen_model_input.input_tokens is not None
assert frozen_model_input.input_tokens.shape[0] == model_input.num_seqs
assert frozen_model_input.attn_metadata is not None
sampled_token_ids = model_input.cached_outputs[-1].sampled_token_ids
num_seqs = model_input.num_seqs
num_queries = model_input.num_queries
frozen_model_input = model_input.frozen_model_input
assert frozen_model_input is not None
attn_metadata = frozen_model_input.attn_metadata
assert attn_metadata is not None
turn_prefills_into_decodes: bool = model_input.current_step == 1 and \
model_input.num_single_step_prefills != 0
attn_metadata.advance_step(
frozen_model_input,
sampled_token_ids,
self.block_size,
num_seqs,
num_queries,
turn_prefills_into_decodes=turn_prefills_into_decodes)
return model_input
def load_model(self) -> None:
self._base_model_runner.load_model()
self.model_memory_usage = self._base_model_runner.model_memory_usage
def save_sharded_state(
self,
path: str,
pattern: Optional[str] = None,
max_size: Optional[int] = None,
) -> None:
return self._base_model_runner.save_sharded_state(
path, pattern, max_size)
def save_tensorized_model(self,
tensorizer_config: TensorizerConfig) -> None:
return self._base_model_runner.save_tensorized_model(tensorizer_config)
def profile_run(self) -> None:
return self._base_model_runner.profile_run()
def remove_all_loras(self):
return self._base_model_runner.remove_all_loras()
def capture_model(self, kv_caches: List[List]) -> None:
return self._base_model_runner.capture_model(kv_caches)
@property
def vocab_size(self) -> int:
return self._base_model_runner.vocab_size
DeferredLogprobsReturnType = Tuple[Optional[List[Optional[PromptLogprobs]]],
Optional[List[SampleLogprobs]]]
def deferred_pythonize_logprobs(
output: SamplerOutput,
sampling_metadata: SamplingMetadata,
logprobs_tensor: Optional[torch.Tensor],
) -> DeferredLogprobsReturnType:
"""Perform deferred logprob Pythonization.
1. Pythonize GPU-side sampler result tensors into CPU-side sampler result.
2. Pythonize GPU-side logprobs tensor into CPU-side logprobs lists,
utilizing the Pythonized sampler result computed in step 1.
These deferred computations are not required for single-step scheduling
or the `profile_run()` phase of multi-step scheduling.
Args:
output: sampler output (under deferred Pythonization)
sampling_metadata
Returns:
prompt_logprobs (CPU), sample_logprobs (CPU)
"""
# - Deferred pythonization of sample result
sampler_result = get_pythonized_sample_results(
output.deferred_sample_results_args)
# - Erase the GPU-side deferred sample_result
# computation args to ensure it is never
# pythonized or transferred to CPU
output.deferred_sample_results_args = None
# - Deferred pythonization of logprobs
(
prompt_logprobs,
sample_logprobs,
) = get_logprobs(logprobs_tensor, sampling_metadata, sampler_result)
assert len(prompt_logprobs) == len(sampling_metadata.seq_groups)
assert len(sample_logprobs) == len(sampling_metadata.seq_groups)
return prompt_logprobs, sample_logprobs
def _pythonize_sampler_output(
model_input: StatefulModelInput,
output: SamplerOutput,
pinned_sampled_token_buffer: torch.Tensor,
sampled_token_ids: torch.Tensor,
logprobs_tensor: Optional[torch.Tensor],
cache: Optional[PythonizationCache],
) -> None:
""" This function is only called when the output tensors are ready.
See :class:`ModelOutput`.
Modifies `output.outputs` and `pinned_sampled_token_buffer` in-place,
adding a Pythonized output data structure
(:class:`CompletionSequenceGroupOutput`) for each :class:`SequenceGroup`.
Args:
model_input
output: sampler output
pinned_sampled_token_token_buffer: CPU-side pinned memory
(receives copy of
GPU-side token buffer.)
sampled_token_ids: GPU-side token buffer
logprobs_tensor: GPU-side tensor containing
logprobs computed during sampling
"""
assert model_input.frozen_model_input is not None
frozen_model_input = model_input.frozen_model_input
assert frozen_model_input.sampling_metadata is not None
sampling_metadata = frozen_model_input.sampling_metadata
# samples generation should have been skipped
assert not output.outputs
pinned_buffer = pinned_sampled_token_buffer[:model_input.num_queries]
# We guarantee output tensors are ready, so it is safe to
# pythonize the sampler output & obtain CPU-side logprobs.
#
# However we should check whether logprobs pythonization may
# be skipped entirely, i.e. because no logprobs were requested
# or pythonization was not deferred. To that end,
#
# * `prompt_logprobs_are_requested_for_prefill` signals that
# there are *any* prefill-phase requests which specify that
# prompt logprobs should be returned.
#
# * `any_logprobs_are_requested` signals that there are any
# requests which (1) specify that sample logprobs should be
# returned, or (2) are in the prefill phase AND specify that
# prompt logprobs should be returned.
#
# Later on, these flags cause adjustments to the pythonization
# process to accommodate logprobs.
seq_groups = sampling_metadata.seq_groups
prompt_logprobs_are_requested_for_prefill = any([
sg.sampling_params.prompt_logprobs is not None and sg.is_prompt
for sg in seq_groups
])
any_logprobs_are_requested = (
prompt_logprobs_are_requested_for_prefill
or any([sg.sampling_params.logprobs is not None for sg in seq_groups]))
if prompt_logprobs_are_requested_for_prefill:
# CPU GPU sync, after gathering *only* sampled tokens (since
# requesting prompt logprobs leads `sampled_token_ids` to
# include prompt token ids in addition to sampled token ids.)
sample_idx_tensor = torch.tensor(
[sdx for sg in seq_groups for sdx in sg.sample_indices])
pinned_buffer = pinned_buffer.copy_(
sampled_token_ids[sample_idx_tensor, :], non_blocking=False)
else:
# CPU GPU sync
pinned_buffer = pinned_buffer.copy_(sampled_token_ids,
non_blocking=False)
# this will not block as the tensors are already on CPU
samples_list = pinned_buffer.tolist()
skip_sampler_cpu_output = (
frozen_model_input.sampling_metadata.skip_sampler_cpu_output)
# *Don't* skip logprobs pythonization *if*:
# * Any requests require logprobs to be returned in this
# iteration AND
# * These requests are being scheduled in a fashion which
# defers pythonization (i.e. multi-step scheduling.)
do_pythonize_logprobs = (skip_sampler_cpu_output
and any_logprobs_are_requested)
(
prompt_logprobs,
sample_logprobs,
) = (deferred_pythonize_logprobs(output, sampling_metadata,
logprobs_tensor)
if do_pythonize_logprobs else (None, None))
for sgdx, (seq_group,
sample_result) in enumerate(zip(seq_groups, samples_list)):
# Reminder: Please update docs/source/features/compatibility_matrix.md
# If the feature combo become valid
# (Check for Guided Decoding)
if seq_group.sampling_params.logits_processors:
assert len(seq_group.sampling_params.logits_processors) == 0, (
"Logits Processors are not supported in multi-step decoding")
if do_pythonize_logprobs:
assert prompt_logprobs is not None
assert sample_logprobs is not None
(
group_prompt_logprobs,
group_sample_logprobs,
) = ( # Utilize deferred pythonization results
prompt_logprobs[sgdx],
sample_logprobs[sgdx],
)
elif any_logprobs_are_requested:
(
group_prompt_logprobs,
group_sample_logprobs,
) = (
# profile_run: use already-computed logprobs
output.outputs[sgdx].prompt_logprobs,
[sample.logprobs for sample in output.outputs[sgdx].samples])
seq_ids = seq_group.seq_ids
next_token_ids = sample_result
parent_ids = [0]
seq_outputs: List[SequenceOutput]
if cache is not None:
completion_seq_group_output: CompletionSequenceGroupOutput = \
cache.cached_completion_seq_group_output.get_object()
completion_seq_group_output.samples.clear()
seq_outputs = completion_seq_group_output.samples
else:
seq_outputs = []
for tdx, (parent_id,
next_token_id) in enumerate(zip(parent_ids, next_token_ids)):
if cache is not None:
seq_output: SequenceOutput = cache.cached_seq_output.get_object(
)
seq_output.parent_seq_id = seq_ids[parent_id]
seq_output.output_token = next_token_id
if any_logprobs_are_requested:
seq_output.logprobs = group_sample_logprobs[tdx]
else:
logprobs = next(iter(seq_output.logprobs.values()))
seq_output.logprobs.clear()
logprobs.logprob = float('inf')
logprobs.rank = None
logprobs.decoded_token = None
seq_output.logprobs[next_token_id] = logprobs
seq_outputs.append(seq_output)
else:
seq_outputs.append(
SequenceOutput(seq_ids[parent_id], next_token_id,
(group_sample_logprobs[tdx]
if any_logprobs_are_requested else {
next_token_id:
Logprob(logprob=float('inf'),
rank=None,
decoded_token=None)
})))
if cache is not None:
completion_seq_group_output.prompt_logprobs = \
group_prompt_logprobs if any_logprobs_are_requested else None
output.outputs.append(completion_seq_group_output)
else:
output.outputs.append(
CompletionSequenceGroupOutput(
seq_outputs, (group_prompt_logprobs
if any_logprobs_are_requested else None)))
assert len(output.outputs) > 0