diff --git a/docs/source/models/supported_models.md b/docs/source/models/supported_models.md index eb1bde9ec0089..3da5aaf713c1f 100644 --- a/docs/source/models/supported_models.md +++ b/docs/source/models/supported_models.md @@ -470,6 +470,11 @@ of the whole prompt are extracted from the normalized hidden state corresponding - `Qwen/Qwen2.5-Math-RM-72B`, etc. - ✅︎ - ✅︎ +* - `Qwen2ForProcessRewardModel` + - Qwen2-based + - `Qwen/Qwen2.5-Math-PRM-7B`, `Qwen/Qwen2.5-Math-PRM-72B`, etc. + - ✅︎ + - ✅︎ ``` If your model is not in the above list, we will try to automatically convert the model using diff --git a/tests/models/embedding/language/test_embedding.py b/tests/models/embedding/language/test_embedding.py index 04ab4dd7371a3..bb47d14807b55 100644 --- a/tests/models/embedding/language/test_embedding.py +++ b/tests/models/embedding/language/test_embedding.py @@ -17,14 +17,15 @@ marks=[pytest.mark.core_model, pytest.mark.cpu_model]), pytest.param("sentence-transformers/all-MiniLM-L12-v2"), pytest.param("intfloat/multilingual-e5-large"), - # [Encoder-decoder] - pytest.param("intfloat/e5-mistral-7b-instruct", - marks=[pytest.mark.core_model, pytest.mark.cpu_model]), + # [Decoder-only] pytest.param("BAAI/bge-multilingual-gemma2", marks=[pytest.mark.core_model]), - pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"), + pytest.param("intfloat/e5-mistral-7b-instruct", + marks=[pytest.mark.core_model, pytest.mark.cpu_model]), pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"), pytest.param("Alibaba-NLP/gte-Qwen2-7B-instruct"), + pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"), + # [Encoder-decoder] pytest.param("sentence-transformers/stsb-roberta-base-v2"), ], ) diff --git a/tests/models/registry.py b/tests/models/registry.py index cb0521cfe80a7..9603ea8817cac 100644 --- a/tests/models/registry.py +++ b/tests/models/registry.py @@ -155,6 +155,7 @@ class _HfExamplesInfo: "MistralModel": _HfExamplesInfo("intfloat/e5-mistral-7b-instruct"), "Qwen2Model": _HfExamplesInfo("ssmits/Qwen2-7B-Instruct-embed-base"), "Qwen2ForRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-RM-72B"), + "Qwen2ForProcessRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-PRM-7B"), "Qwen2ForSequenceClassification": _HfExamplesInfo("jason9693/Qwen2.5-1.5B-apeach"), # noqa: E501 "RobertaModel": _HfExamplesInfo("sentence-transformers/stsb-roberta-base-v2"), # noqa: E501 "RobertaForMaskedLM": _HfExamplesInfo("sentence-transformers/all-roberta-large-v1"), # noqa: E501 diff --git a/vllm/model_executor/models/qwen2_rm.py b/vllm/model_executor/models/qwen2_rm.py index 988d682d36be3..593ce4857af0f 100644 --- a/vllm/model_executor/models/qwen2_rm.py +++ b/vllm/model_executor/models/qwen2_rm.py @@ -12,7 +12,7 @@ from vllm.config import VllmConfig from vllm.model_executor.layers.linear import (ColumnParallelLinear, RowParallelLinear) -from vllm.model_executor.layers.pooler import Pooler, PoolingType +from vllm.model_executor.layers.pooler import Pooler, PoolingType, SimplePooler from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.sequence import IntermediateTensors, PoolerOutput @@ -32,7 +32,7 @@ def forward(self, input): return self.activation(input) -class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP): +class Qwen2RewardBaseModel(nn.Module, SupportsLoRA, SupportsPP): packed_modules_mapping = { "qkv_proj": [ "q_proj", @@ -60,7 +60,6 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config - pooler_config = vllm_config.model_config.pooler_config self.config = config self.lora_config = lora_config @@ -74,14 +73,11 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config.hidden_size, quant_config=quant_config), ReLU(), - RowParallelLinear(config.hidden_size, 1, + RowParallelLinear(config.hidden_size, + config.num_labels, quant_config=quant_config), ) - self._pooler = Pooler.from_config_with_defaults( - pooler_config, - pooling_type=PoolingType.ALL, - normalize=False, - softmax=False) + self._pooler: SimplePooler self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) @@ -115,3 +111,31 @@ def load_weights(self, weights: Iterable[Tuple[str, loader = AutoWeightsLoader(self, ignore_unexpected_prefixes=["lm_head."]) return loader.load_weights(weights) + + +class Qwen2ForRewardModel(Qwen2RewardBaseModel): + + def __init__(self, *, vllm_config, prefix=""): + vllm_config.model_config.hf_config.num_labels = 1 + super().__init__(vllm_config=vllm_config, prefix=prefix) + pooler_config = vllm_config.model_config.pooler_config + self._pooler = Pooler.from_config_with_defaults( + pooler_config, + pooling_type=PoolingType.ALL, + normalize=False, + softmax=False) + + +class Qwen2ForProcessRewardModel(Qwen2RewardBaseModel): + + def __init__(self, *, vllm_config, prefix=""): + vllm_config.model_config.hf_config.num_labels = 2 + super().__init__(vllm_config=vllm_config, prefix=prefix) + pooler_config = vllm_config.model_config.pooler_config + self._pooler = Pooler.from_config_with_defaults( + pooler_config, + pooling_type=PoolingType.STEP, + normalize=False, + softmax=True, + step_tag_id=151651, + ) diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index 311f91472783b..8d2719ca2d00d 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -127,6 +127,7 @@ "Qwen2Model": ("qwen2", "Qwen2EmbeddingModel"), "Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"), "Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"), + "Qwen2ForProcessRewardModel": ("qwen2_rm", "Qwen2ForProcessRewardModel"), "TeleChat2ForCausalLM": ("telechat2", "TeleChat2ForCausalLM"), # [Multimodal] "LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # noqa: E501