Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: AsyncEngineDeadError: Task finished unexpectedly with Gemma2 9B #6190

Closed
Tracked by #5901
nelyajizi opened this issue Jul 7, 2024 · 3 comments
Closed
Tracked by #5901
Labels
bug Something isn't working stale

Comments

@nelyajizi
Copy link

Your current environment

Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.6
Libc version: glibc-2.35

Python version: 3.9.19 (main, May  6 2024, 19:43:03)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090
Nvidia driver version: 555.85
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             28
On-line CPU(s) list:                0-27
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Core(TM) i7-14700K
CPU family:                         6
Model:                              183
Thread(s) per core:                 2
Core(s) per socket:                 14
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           6835.19
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization:                     VT-x
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          672 KiB (14 instances)
L1i cache:                          448 KiB (14 instances)
L2 cache:                           28 MiB (14 instances)
L3 cache:                           33 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] flashinfer==0.0.8+cu121torch2.3
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnx==1.16.1
[pip3] onnxruntime==1.18.1
[pip3] sentence-transformers==3.0.1
[pip3] torch==2.3.0
[pip3] torchaudio==2.3.0
[pip3] torchvision==0.18.0
[pip3] transformers==4.42.3
[pip3] triton==2.3.0
[conda] flashinfer                0.0.8+cu121torch2.3          pypi_0    pypi
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] sentence-transformers     3.0.1                    pypi_0    pypi
[conda] torch                     2.3.0                    pypi_0    pypi
[conda] torchaudio                2.3.0                    pypi_0    pypi
[conda] torchvision               0.18.0                   pypi_0    pypi
[conda] transformers              4.42.3                   pypi_0    pypi
[conda] triton                    2.3.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X                              N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

i am using the latest vllm, and FlashInfer (flashinfer-0.0.8+cu121torch2.3-cp39-cp39-linux_x86_64.whl), when using Gemma2
with the fllowing code:
engine_args = AsyncEngineArgs(model=model_id, disable_log_requests=True, disable_log_stats=True,
trust_remote_code=True,
gpu_memory_utilization=0.9, dtype=torch.float16, quantization=quantization, load_format=load_format)

    self.engine = AsyncLLMEngine.from_engine_args(engine_args)
    results_generator = self.engine.generate(formatted_prompt, self.sampling_params, request_id)
    index, num_tokens = 0, 0
    buffer = ""
    output_text = ""
    async for request_output in results_generator:
        if request_output.outputs[0].text and "\ufffd" == request_output.outputs[0].text[-1]:
            continue
        if first_token_time is None:
            first_token_time = time.monotonic_ns()
        text_delta = request_output.outputs[0].text[index:]
        index = len(request_output.outputs[0].text)
        num_tokens = len(request_output.outputs[0].token_ids)
        
        output_text+= text_delta
        buffer += text_delta
        if len(buffer) > 100:  # Adjust buffer size as needed
            print(buffer, end='', flush=True)
            buffer = ""

    # Print remaining buffer
    if buffer:
        print(buffer, end='', flush=True)

(model_id: ModelCloud/gemma-2-9b-it-gptq-4bit) after the first successfull test generation, i had the following error:

Prompt length: 927, New tokens: 200, Time to first: 0.08s, Prompt tokens per second: 10961.46 tps, New tokens per second: 64.38 tps
Input: Show me how to perform a linear regression analysis using scikit-learn and plot the results using matplotlib.
ERROR 07-07 10:35:29 async_llm_engine.py:616] Engine iteration timed out. This should never happen!
ERROR 07-07 10:35:29 async_llm_engine.py:53] Engine background task failed
ERROR 07-07 10:35:29 async_llm_engine.py:53] Traceback (most recent call last):
ERROR 07-07 10:35:29 async_llm_engine.py:53] File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py", line 593, in run_engine_loop
ERROR 07-07 10:35:29 async_llm_engine.py:53] await asyncio.sleep(0)
ERROR 07-07 10:35:29 async_llm_engine.py:53] File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/asyncio/tasks.py", line 641, in sleep
ERROR 07-07 10:35:29 async_llm_engine.py:53] await __sleep0()
ERROR 07-07 10:35:29 async_llm_engine.py:53] File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/asyncio/tasks.py", line 630, in __sleep0
ERROR 07-07 10:35:29 async_llm_engine.py:53] yield
ERROR 07-07 10:35:29 async_llm_engine.py:53] asyncio.exceptions.CancelledError
ERROR 07-07 10:35:29 async_llm_engine.py:53]
ERROR 07-07 10:35:29 async_llm_engine.py:53] During handling of the above exception, another exception occurred:
ERROR 07-07 10:35:29 async_llm_engine.py:53]
ERROR 07-07 10:35:29 async_llm_engine.py:53] Traceback (most recent call last):
ERROR 07-07 10:35:29 async_llm_engine.py:53] File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py", line 43, in _log_task_completion
ERROR 07-07 10:35:29 async_llm_engine.py:53] return_value = task.result()
ERROR 07-07 10:35:29 async_llm_engine.py:53] File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py", line 593, in run_engine_loop
ERROR 07-07 10:35:29 async_llm_engine.py:53] await asyncio.sleep(0)
ERROR 07-07 10:35:29 async_llm_engine.py:53] File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_timeout.py", line 95, in aexit
ERROR 07-07 10:35:29 async_llm_engine.py:53] self._do_exit(exc_type)
ERROR 07-07 10:35:29 async_llm_engine.py:53] File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_timeout.py", line 178, in _do_exit
ERROR 07-07 10:35:29 async_llm_engine.py:53] raise asyncio.TimeoutError
ERROR 07-07 10:35:29 async_llm_engine.py:53] asyncio.exceptions.TimeoutError
Exception in callback _log_task_completion(error_callback=>)(<Task finishe...imeoutError()>) at /home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py:33
handle: <Handle _log_task_completion(error_callback=>)(<Task finishe...imeoutError()>) at /home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py:33>
Traceback (most recent call last):
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py", line 593, in run_engine_loop
await asyncio.sleep(0)
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/asyncio/tasks.py", line 641, in sleep
await __sleep0()
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/asyncio/tasks.py", line 630, in __sleep0
yield
asyncio.exceptions.CancelledError

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py", line 43, in _log_task_completion
return_value = task.result()
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py", line 593, in run_engine_loop
await asyncio.sleep(0)
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_timeout.py", line 95, in aexit
self._do_exit(exc_type)
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_timeout.py", line 178, in _do_exit
raise asyncio.TimeoutError
asyncio.exceptions.TimeoutError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/asyncio/events.py", line 80, in _run
self._context.run(self._callback, *self._args)
File "/home/lawnel/miniconda3/envs/llm/lib/python3.9/site-packages/vllm/engine/async_llm_engine.py", line 55, in _log_task_completion
raise AsyncEngineDeadError(
vllm.engine.async_llm_engine.AsyncEngineDeadError: Task finished unexpectedly. This should never happen! Please open an issue on Github. See stack trace above for theactual cause.

@nelyajizi nelyajizi added the bug Something isn't working label Jul 7, 2024
@DarkLight1337
Copy link
Member

We have a tracking issue (#5901) for this. Please provide more details there so we can better troubleshoot the underlying cause.

Copy link

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!

@github-actions github-actions bot added the stale label Oct 25, 2024
Copy link

This issue has been automatically closed due to inactivity. Please feel free to reopen if you feel it is still relevant. Thank you!

@github-actions github-actions bot closed this as not planned Won't fix, can't repro, duplicate, stale Nov 26, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working stale
Projects
None yet
Development

No branches or pull requests

2 participants