You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(vllm311) [root@instance-bg8ds9yc pengfei]# python vllm/collect_env.py
Collecting environment information...
WARNING 07-19 14:45:53 _custom_ops.py:14] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'")
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: CentOS Linux release 7.9.2009 (Core) (x86_64)
GCC version: (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
Clang version: Could not collect
CMake version: version 3.30.0
Libc version: glibc-2.17
Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-3.10.0-1160.102.1.el7.x86_64-x86_64-with-glibc2.17
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: Tesla V100-SXM2-32GB
GPU 1: Tesla V100-SXM2-32GB
Nvidia driver version: 530.30.02
cuDNN version: /root/miniconda3/envs/wizardcoder34/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn.so.8
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
Stepping: 7
CPU MHz: 2600.000
BogoMIPS: 5200.00
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 33792K
NUMA node0 CPU(s): 0-15
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq monitor vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat umip pku ospke avx512_vnni md_clear spec_ctrl intel_stibp arch_capabilities
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.1
[pip3] torchvision==0.18.1
[pip3] transformers==4.42.4
[pip3] triton==2.3.1
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] torch 2.3.1 pypi_0 pypi
[conda] torchvision 0.18.1 pypi_0 pypi
[conda] transformers 4.42.4 pypi_0 pypi
[conda] triton 2.3.1 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 CPU Affinity NUMA Affinity
GPU0 X NV2 0-15 N/A
GPU1 NV2 X 0-15 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
🐛 Describe the bug
I installed vllm with this command: pip install vllm
but I got this error when I import vllm
Python 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import vllm
WARNING 07-19 14:34:32 _custom_ops.py:14] Failed to import from vllm._C with ImportError("/lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/_C.abi3.so)")
when I run :
python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen2-7B-Instruct --dtype half
``
I got this:
```text
WARNING 07-19 14:50:28 _custom_ops.py:14] Failed to import from vllm._C with ImportError("/lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/_C.abi3.so)")
INFO 07-19 14:50:30 api_server.py:212] vLLM API server version 0.5.2
INFO 07-19 14:50:30 api_server.py:213] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], model='Qwen/Qwen2-7B-Instruct', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, download_dir=None, load_format='auto', dtype='half', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', scheduler_delay_factor=0.0, enable_chunked_prefill=False, speculative_model=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, model_loader_extra_config=None, preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, engine_use_ray=False, disable_log_requests=False, max_log_len=None)
WARNING 07-19 14:50:30 config.py:1378] Casting torch.bfloat16 to torch.float16.
INFO 07-19 14:50:30 llm_engine.py:174] Initializing an LLM engine (v0.5.2) with config: model='Qwen/Qwen2-7B-Instruct', speculative_config=None, tokenizer='Qwen/Qwen2-7B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=32768, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=Qwen/Qwen2-7B-Instruct, use_v2_block_manager=False, enable_prefix_caching=False)
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
INFO 07-19 14:50:31 selector.py:150] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
INFO 07-19 14:50:31 selector.py:53] Using XFormers backend.
INFO 07-19 14:50:32 selector.py:150] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
INFO 07-19 14:50:32 selector.py:53] Using XFormers backend.
INFO 07-19 14:50:33 weight_utils.py:218] Using model weights format ['*.safetensors']
INFO 07-19 14:50:40 model_runner.py:266] Loading model weights took 14.2487 GB
ERROR 07-19 14:50:40 _custom_ops.py:42] Error in calling custom op rms_norm: '_OpNamespace' '_C' object has no attribute 'rms_norm'
ERROR 07-19 14:50:40 _custom_ops.py:42] Possibly you have built or installed an obsolete version of vllm.
ERROR 07-19 14:50:40 _custom_ops.py:42] Please try a clean build and install of vllm,or remove old built files such as vllm/*cpython*.so and build/ .
[rank0]: Traceback (most recent call last):
[rank0]: File "<frozen runpy>", line 198, in _run_module_as_main
[rank0]: File "<frozen runpy>", line 88, in _run_code
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 282, in <module>
[rank0]: run_server(args)
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 224, in run_server
[rank0]: if llm_engine is not None else AsyncLLMEngine.from_engine_args(
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 444, in from_engine_args
[rank0]: engine = cls(
[rank0]: ^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 373, in __init__
[rank0]: self.engine = self._init_engine(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 520, in _init_engine
[rank0]: return engine_class(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 263, in __init__
[rank0]: self._initialize_kv_caches()
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 362, in _initialize_kv_caches
[rank0]: self.model_executor.determine_num_available_blocks())
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/executor/gpu_executor.py", line 78, in determine_num_available_blocks
[rank0]: return self.driver_worker.determine_num_available_blocks()
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
[rank0]: return func(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/worker/worker.py", line 179, in determine_num_available_blocks
[rank0]: self.model_runner.profile_run()
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
[rank0]: return func(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 923, in profile_run
[rank0]: self.execute_model(model_input, kv_caches, intermediate_tensors)
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
[rank0]: return func(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1341, in execute_model
[rank0]: hidden_or_intermediate_states = model_executable(
[rank0]: ^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 336, in forward
[rank0]: hidden_states = self.model(input_ids, positions, kv_caches,
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 257, in forward
[rank0]: hidden_states, residual = layer(
[rank0]: ^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 205, in forward
[rank0]: hidden_states = self.input_layernorm(hidden_states)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/model_executor/custom_op.py", line 13, in forward
[rank0]: return self._forward_method(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/model_executor/layers/layernorm.py", line 62, in forward_cuda
[rank0]: ops.rms_norm(
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/_custom_ops.py", line 43, in wrapper
[rank0]: raise e
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/_custom_ops.py", line 34, in wrapper
[rank0]: return fn(*args, **kwargs)
[rank0]: ^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/vllm/_custom_ops.py", line 158, in rms_norm
[rank0]: torch.ops._C.rms_norm(out, input, weight, epsilon)
[rank0]: ^^^^^^^^^^^^^^^^^^^^^
[rank0]: File "/root/miniconda3/envs/vllm311/lib/python3.11/site-packages/torch/_ops.py", line 921, in __getattr__
[rank0]: raise AttributeError(
[rank0]: AttributeError: '_OpNamespace' '_C' object has no attribute 'rms_norm'
The text was updated successfully, but these errors were encountered:
I downloaed the released asesst: vllm-0.5.2-cp311-cp311-manylinux1_x86_64.whl
then install vllm with: pip install vllm-0.5.2-cp311-cp311-manylinux1_x86_64.whl
finally it works!!!!
my next question is, how can I compile such a whl file? Is this command right?: python setup.py bdist_wheel
balcklive
changed the title
[Bug]:
[Bug]: Failed to import from vllm._C with ImportError("/lib64/libc.so.6: version `GLIBC_2.32' not found
Jul 19, 2024
Your current environment
🐛 Describe the bug
I installed vllm with this command: pip install vllm
but I got this error when I import vllm
when I run :
The text was updated successfully, but these errors were encountered: