-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_model.py
493 lines (446 loc) · 20.9 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import argparse
from collections import defaultdict
import gzip
import logging
import os
import pickle
import random
import re
import sys
from typing import List, Tuple, Dict, Optional
import humanize
import numpy
from chars import CHARS, WEIGHTS, OOV_WEIGHT
def setup():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-i", "--input", help="Path to the train dataset.")
parser.add_argument("-l", "--layers", default="600",
help="Layers configuration: number of neurons on each layer separated by "
"comma.")
parser.add_argument("-m", "--length", type=int, default=100, help="RNN sequence length.")
parser.add_argument("-b", "--batch-size", type=int, default=128, help="Batch size.")
parser.add_argument("-e", "--epochs", type=int, default=3, help="Number of epochs.")
parser.add_argument("-t", "--type", default="LSTM",
choices=("GRU", "LSTM", "CuDNNLSTM", "CuDNNGRU"),
help="Recurrent layer type to use.")
parser.add_argument("-v", "--validation", type=float, default=0.2,
help="Fraction of the dataset to use for validation.")
parser.add_argument("--negative-code-samples", type=float, default=0.5,
help="Ratio of negative code boundary samples to the overall number.")
parser.add_argument("-o", "--output", required=True,
help="Path to the resulting Tensorflow graph.")
parser.add_argument("--snapshot", help="RNN snapshot to load.")
parser.add_argument("--code-samples", default="code_samples.pickle",
help="Cached pickle with the dataset to train Code Neuron.")
parser.add_argument("--optimizer", default="Adam", choices=("RMSprop", "Adam"),
help="Optimizer to apply.")
parser.add_argument("--dropout", type=float, default=0, help="Dropout ratio.")
parser.add_argument("--lr", default=0.001, type=float, help="Learning rate.")
parser.add_argument("--decay", default=0.00002, type=float, help="Learning rate decay.")
parser.add_argument("--enable-weights", action="store_true",
help="Weight character classes.")
parser.add_argument("--seed", type=int, default=7, help="Random seed.")
parser.add_argument("--devices", default="0,1", help="Devices to use. Empty means CPU.")
parser.add_argument("--tensorboard", default="tb_logs",
help="TensorBoard output logs directory.")
logging.basicConfig(level=logging.INFO)
args = parser.parse_args()
numpy.random.seed(args.seed)
random.seed(args.seed)
return args
def read_dataset(path: str, min_length: int, clean_code: bool, analyze_chars: bool) \
-> Tuple[List[str], Dict[str, List[int]]]:
log = logging.getLogger("reader")
texts = []
bufsize = 1 << 20
buffer = bytearray(bufsize)
bufpos = 0
read_buffer = bytearray(bufsize)
chars = defaultdict(list)
def append_text(end_index: int):
text = buffer[:end_index].decode("utf-8")
if analyze_chars:
index = len(texts)
for c in sorted(set(text)):
chars[c].append(index)
if clean_code:
text = text.replace("\x02", "").replace("\x03", "")
if len(text) >= min_length:
texts.append(text)
with gzip.open(path) as gzf:
size = gzf.readinto(read_buffer)
while size > 0:
sys.stderr.write("%d texts\r" % len(texts))
rpos = 0
while rpos < size:
border = read_buffer.find(b"\x04", rpos)
if border == -1:
border = size
delta = border - rpos
if bufpos + delta > bufsize:
raise OverflowError(
"%d %d %d %d" % (bufpos, delta, bufpos + delta, bufsize))
buffer[bufpos:bufpos + delta] = read_buffer[rpos:border]
if border < size:
append_text(bufpos + delta)
bufpos = 0
else:
bufpos += delta
rpos = border + 1
size = gzf.readinto(read_buffer)
if bufpos > 0:
append_text(bufpos)
log.info("%d texts, avg len %d, %d distinct chars, total chars %d",
len(texts), numpy.mean([len(t) for t in texts]), len(chars),
sum(len(t) for t in texts))
return texts, chars
def config_keras():
import tensorflow as tf
from keras import backend
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
backend.tensorflow_backend.set_session(tf.Session(config=config))
def create_char_rnn_model(args: argparse.Namespace, classes: int,
weights: Optional[List[numpy.ndarray]] = None):
# this late import prevents from loading Tensorflow too soon
import tensorflow as tf
tf.set_random_seed(args.seed)
from keras import layers, models, initializers, optimizers, metrics
log = logging.getLogger("model")
if args.devices:
dev1, dev2 = ("/gpu:" + dev for dev in args.devices.split(","))
else:
dev1 = dev2 = "/cpu:0"
def add_rnn(device):
with tf.device(device):
input = layers.Input(batch_shape=(args.batch_size, args.length), dtype="uint8")
log.info("Added %s", input)
embedding = layers.Embedding(
200, 200, embeddings_initializer=initializers.Identity(), trainable=False)(input)
log.info("Added %s", embedding)
layer = embedding
layer_sizes = [int(n) for n in args.layers.split(",")]
for i, nn in enumerate(layer_sizes):
with tf.device(device):
layer_type = getattr(layers, args.type)
ret_seqs = (i < len(layer_sizes) - 1)
try:
layer = layer_type(nn, return_sequences=ret_seqs, implementation=2)(layer)
except TypeError:
# implementation kwarg is not present in CuDNN layers
layer = layer_type(nn, return_sequences=ret_seqs)(layer)
log.info("Added %s", layer)
if args.dropout > 0:
layer = layers.Dropout(args.dropout)(layer)
log.info("Added %s", layer)
return input, layer
forward_input, forward_output = add_rnn(dev1)
reverse_input, reverse_output = add_rnn(dev2)
with tf.device(dev1):
merged = layers.Concatenate()([forward_output, reverse_output])
log.info("Added %s", merged)
dense = layers.Dense(classes, activation="softmax")
decision = dense(merged)
log.info("Added %s", decision)
optimizer = getattr(optimizers, args.optimizer)(lr=args.lr, decay=args.decay)
log.info("Added %s", optimizer)
model = models.Model(inputs=[forward_input, reverse_input], outputs=[decision])
log.info("Compiling...")
model.compile(optimizer=optimizer, loss="categorical_crossentropy",
metrics=[metrics.categorical_accuracy, metrics.top_k_categorical_accuracy])
if weights:
log.info("Setting weights...")
dense_weights = dense.get_weights()
weights[-len(dense_weights):] = dense_weights
model.set_weights(weights)
log.info("Done")
return model
def train_char_rnn_model(model, dataset: List[str], args: argparse.Namespace):
from keras import callbacks, utils
if args.length % 2 != 0:
raise ValueError("--length must be even")
log = logging.getLogger("train")
numpy.random.seed(args.seed)
log.info("Splitting into validation and train...")
valid_doc_indices = set(numpy.random.choice(
numpy.arange(len(dataset)), int(len(dataset) * args.validation), replace=False))
train_doc_indices = set(range(len(dataset))) - valid_doc_indices
train_docs = [dataset[i] for i in sorted(train_doc_indices)]
valid_docs = [dataset[i] for i in sorted(valid_doc_indices)]
# we cannot reach first l / 2 (forward) and last l / 2 (backward)
valid_size = sum(len(text) - args.length for text in valid_docs)
train_size = sum(len(text) - args.length for text in train_docs)
log.info("train samples: %d\tvalidation samples: %d\t~%.3f",
train_size, valid_size, valid_size / (valid_size + train_size))
class Feeder(utils.Sequence):
def __init__(self, texts: List[str]):
self.texts = texts
pos = 0
self.index = index = numpy.zeros(len(texts) + 1, dtype=numpy.int32)
for i, text in enumerate(texts):
pos += len(text) - args.length
index[i + 1] = pos
# this takes much memory but is the best we can do.
self.batches = numpy.arange(pos, dtype=numpy.uint32)
log.info("Batches occupied %s", humanize.naturalsize(self.batches.size))
self.on_epoch_end()
def __len__(self):
return self.index[-1] // args.batch_size
def __getitem__(self, item):
centers = self.batches[item * args.batch_size:(item + 1) * args.batch_size]
batch = ([numpy.zeros((args.batch_size, args.length), dtype=numpy.uint8)
for _ in range(2)],
[numpy.zeros((args.batch_size, len(CHARS) + 1), dtype=numpy.float32)])
text_indices = numpy.searchsorted(self.index, centers + 0.5) - 1
for bi, (center, text_index) in enumerate(zip(centers, text_indices)):
text = self.texts[text_index]
x = center - self.index[text_index]
assert 0 <= x < self.index[text_index + 1] - self.index[text_index]
x += args.length // 2
text_i = x - 1
batch_i = args.length - 1
while text_i >= 0 and batch_i >= 0:
batch[0][0][bi][batch_i] = CHARS.get(text[text_i], len(CHARS))
text_i -= 1
batch_i -= 1
text_i = x + 1
batch_i = args.length - 1
while text_i < len(text) and batch_i >= 0:
batch[0][1][bi][batch_i] = CHARS.get(text[text_i], len(CHARS))
text_i += 1
batch_i -= 1
batch[1][0][bi][CHARS.get(text[x], len(CHARS))] = 1
return batch
def on_epoch_end(self):
log.info("Shuffling")
numpy.random.shuffle(self.batches)
log.info("Creating the training feeder")
train_feeder = Feeder(train_docs)
log.info("Creating the validation feeder")
valid_feeder = Feeder(valid_docs)
log.info("model.fit_generator")
tensorboard = callbacks.TensorBoard(log_dir=args.tensorboard)
checkpoint = callbacks.ModelCheckpoint(
os.path.join(args.tensorboard, "checkpoint_{epoch:02d}_{val_loss:.3f}.hdf5"),
save_best_only=True)
if args.enable_weights:
weights = [min(v, 100) for (c, v) in sorted(WEIGHTS.items())] + [OOV_WEIGHT]
else:
weights = None
class Shuffler(callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
# Bug: it is not called automatically
train_feeder.on_epoch_end()
class Presenter(callbacks.Callback):
def __init__(self):
super().__init__()
self.i = 0
self.text = "I am working on a collection of classes used for video playback and " \
"recording. I have one main class which acts like the public interface, " \
"with methods like play(), stop(), pause(), record() etc... Then I " \
"have workhorse classes which do the video decoding and video encoding."
self.batches = []
for x in range(args.length // 2, len(self.text) - args.length // 2 - 1):
before = self.text[x - args.length//2:x]
after = self.text[x + 1:x + 1 + args.length // 2]
before_arr = numpy.zeros(args.length, dtype=numpy.uint8)
after_arr = numpy.zeros_like(before_arr)
for i, c in enumerate(reversed(before)):
before_arr[args.length - 1 - i] = CHARS.get(c, len(CHARS))
for i, c in enumerate(reversed(after)):
after_arr[args.length - 1 - i] = CHARS.get(c, len(CHARS))
self.batches.append((before_arr, after_arr))
log.info("Testing on %d batches" % len(self.batches))
self.vocab = [None] * (len(CHARS) + 1)
for k, v in CHARS.items():
self.vocab[v] = k
self.vocab[len(CHARS)] = "?"
def on_batch_end(self, batch, logs=None):
if self.i % 10000 == 0:
predicted = model.predict(self.batches, batch_size=len(self.batches))
print("".join(self.vocab[numpy.argmax(p)] for p in predicted))
class LRPrinter(callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
from keras import backend
lr = self.model.optimizer.lr
decay = self.model.optimizer.decay
iterations = self.model.optimizer.iterations
lr_with_decay = lr / (1. + decay * backend.cast(iterations, backend.dtype(decay)))
print("Learning rate:", backend.eval(lr_with_decay))
model.fit_generator(generator=train_feeder,
validation_data=valid_feeder,
validation_steps=len(valid_feeder),
steps_per_epoch=len(train_feeder),
epochs=args.epochs,
class_weight=weights,
callbacks=[tensorboard, checkpoint, Shuffler(), LRPrinter()],
use_multiprocessing=True)
def load_char_rnn_model(args: argparse.Namespace):
from keras.models import load_model
from keras.layers.recurrent import RNN
log = logging.getLogger("load")
log.info("Reading %s", args.snapshot)
model = load_model(args.snapshot, compile=False)
args.batch_size, args.length = model.layers[0].input_shape
lengths = []
for layer in model.layers:
if isinstance(layer, RNN):
args.type = type(layer).__name__
length = layer.output_shape[-1]
if not lengths or lengths[-1] != length:
lengths.append(length)
args.layers = ",".join(str(l) for l in lengths)
log.info("Inferred parameters: --batch-size %d --length %d --type %s --layers %s",
args.batch_size, args.length, args.type, args.layers)
return model
def bake_code_neuron_dataset(texts: List[str], negative_ratio: float, length: int) \
-> Tuple[List[Tuple[numpy.ndarray, numpy.ndarray]],
List[Tuple[numpy.ndarray, numpy.ndarray]],
List[Tuple[numpy.ndarray, numpy.ndarray]]]:
assert 0 < negative_ratio < 1
log = logging.getLogger("code_neuron_dataset")
positive_beg = []
positive_neg = []
negative = []
needle = re.compile("[\x02\x03]")
def gen_sample(x: int, text: str):
before = numpy.zeros(length, dtype=numpy.uint8)
if text[x] in ("\x02", "\x03"):
i = x - 1
else:
i = x
j = length - 1
while i >= 0 and j >= 0:
if text[i] not in ("\x02", "\x03"):
before[j] = CHARS.get(text[i], len(CHARS))
j -= 1
i -= 1
after = numpy.zeros(length, dtype=numpy.uint8)
i = x + 1
j = length - 1
while i < len(text) and j >= 0:
if text[i] not in ("\x02", "\x03"):
after[j] = CHARS.get(text[i], len(CHARS))
j -= 1
i += 1
return before, after
for text in texts:
for match in needle.finditer(text):
arr = positive_beg if match.group() == "\x02" else positive_neg
arr.append(gen_sample(match.start(), text))
positive_count = len(positive_beg) + len(positive_neg)
negative_count = int(negative_ratio * positive_count / (1 - negative_ratio))
log.info("Positive count: %d (%d, %d)", positive_count, len(positive_beg), len(positive_neg))
log.info("Negative count: %d", negative_count)
total_samples = sum(len(text) - length for text in texts)
numpy.random.seed(7)
choices = numpy.random.choice(numpy.arange(total_samples, dtype=numpy.int32),
negative_count, replace=False)
choices.sort()
pos = 0
ni = 0
for ti, text in enumerate(texts):
if ti % 100 == 0:
sys.stderr.write("%d\r" % ti)
delta = len(text) - length
while pos + delta > choices[ni]:
x = choices[ni] - pos + length // 2
while x < len(text) - 1 and (
text[x] in ("\x02", "\x03") or text[x + 1] in ("\x02", "\x03")):
x += 1
if x == len(text) - 1:
while x >= 0 and (text[x] in ("\x02", "\x03") or text[x + 1] in ("\x02", "\x03")):
x -= 1
assert x >= 0
# x and x+1 are not code boundaries => we look at the middle
negative.append(gen_sample(x, text))
ni += 1
if ni == len(choices):
break
if ni == len(choices):
break
pos += delta
sys.stderr.write("\n")
return positive_beg, positive_neg, negative
def train_code_neuron_model(
model_code,
samples: Tuple[List[Tuple[numpy.ndarray, numpy.ndarray]],
List[Tuple[numpy.ndarray, numpy.ndarray]],
List[Tuple[numpy.ndarray, numpy.ndarray]]],
args: argparse.Namespace):
log = logging.getLogger("train_cn")
size = sum(len(samples[i]) for i in range(3))
val_size = int(size * args.validation)
val_size -= val_size % args.batch_size
size = int(val_size / args.validation)
log.info("Final size: %d", size)
train_x_before = numpy.zeros((size, args.length), dtype=numpy.uint8)
train_x_after = numpy.zeros_like(train_x_before)
train_y = numpy.zeros((size, 3), dtype=numpy.float32)
def fill(offset: int, arr: List[Tuple[numpy.ndarray, numpy.ndarray]], y: numpy.ndarray):
for before, after in arr:
train_x_before[offset] = before
train_x_after[offset] = after
train_y[offset] = y
offset += 1
if offset == size:
break
return offset
offset = fill(0, samples[0], numpy.array([1, 0, 0], dtype=numpy.float32))
offset = fill(offset, samples[1], numpy.array([0, 1, 0], dtype=numpy.float32))
fill(offset, samples[2], numpy.array([0, 0, 1], dtype=numpy.float32))
from keras import callbacks
tensorboard = callbacks.TensorBoard(log_dir=args.tensorboard)
checkpoint = callbacks.ModelCheckpoint(
os.path.join(args.tensorboard, "checkpoint_{epoch:02d}_{val_loss:.3f}.hdf5"),
save_best_only=True)
model_code.fit([train_x_before, train_x_after], train_y,
batch_size=args.batch_size, validation_split=args.validation,
epochs=args.epochs, callbacks=[tensorboard, checkpoint])
def export_model(model, path: str):
from keras import backend
import tensorflow as tf
from tensorflow.python.framework import graph_util, graph_io
log = logging.getLogger("export")
log.info("Exporting %s to %s", model, path)
session = backend.get_session()
tf.identity(model.outputs[0], name="output")
graph_def = session.graph.as_graph_def()
# reset the devices
for node in graph_def.node:
node.device = ""
constant_graph = graph_util.convert_variables_to_constants(session, graph_def, ["output"])
graph_io.write_graph(constant_graph, *os.path.split(path), as_text=False)
def main():
args = setup()
try:
if not args.snapshot:
dataset, _ = read_dataset(args.input, args.length + 1, True, False)
config_keras()
model_char = create_char_rnn_model(args, len(CHARS) + 1)
train_char_rnn_model(model_char, dataset, args)
del dataset
else:
config_keras()
model_char = load_char_rnn_model(args)
if not os.path.exists(args.code_samples):
if not args.input or not os.path.exists(args.input):
raise FileNotFoundError("--input %s" % args.input)
dataset, _ = read_dataset(args.input, args.length + 1, False, False)
samples = bake_code_neuron_dataset(dataset, args.negative_code_samples, args.length)
del dataset
with open(args.code_samples, "wb") as fout:
pickle.dump(samples, fout, protocol=-1)
else:
with open(args.code_samples, "rb") as fin:
samples = pickle.load(fin)
model_code = create_char_rnn_model(args, 3, model_char.get_weights())
del model_char
train_code_neuron_model(model_code, samples, args)
export_model(model_code, args.output)
del model_code
finally:
from keras import backend
backend.clear_session()
if __name__ == "__main__":
sys.exit(main())