-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLFP_Spectrum.m
174 lines (157 loc) · 8.08 KB
/
LFP_Spectrum.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
cd('E:\Data\export\PrV88_119_OEph_16Ch');
% fileName='PrV88_119AN_OptoStim5_OEph_16Ch';
fileName='PrV88_119AN_WakingOptoStim_OEph_16Ch';
stimParams='2mW 2ms 5Hz';
% LFPdata=rawData;
LFP_Data=importdata([fileName '_LFP_raw.mat']);
trialData=importdata([fileName '_CAR_trials.mat']);
preproc=1;
% set parameters
spectrumParams.Fs=1000; % sampling frequency
spectrumParams.fpass=[0 100]; % frequency band of interest
spectrumParams.tapers=[5 9]; % taper parameters [TW K].
% TW is the time-bandwidth product
% K is the number of tapers to be used (less than or equal to 2TW-1).
spectrumParams.pad=2; % padding factor for fft
% -1 no padding,
% 0 padding to the next highest power of 2
% format data
LFP_Data=single(LFP_Data);
if size(LFP_Data,2)>size(LFP_Data,1)
LFP_Data=LFP_Data';
end
%% preprocessing - if not done already
if preproc
% Remove DC offsets and slowly changing components with locdetrend
% function, using 1s moving window.
movingWin=[.1 .05]; % [1 0.1]
LFP_Data=locdetrend(LFP_Data,spectrumParams.Fs,movingWin);
% [S,f]=mtspectrumc(LFPdata,params);
% figure; plot_vector(S,f);
% remove 60Hz line noise
LFP_Data=rmlinesc(LFP_Data,spectrumParams);
% [S,f]=mtspectrumc(LFPdata,params);
% figure; plot_vector(S,f);
end
%% Average power spectral density estimation
% first filter the raw LFP trace using a 300-Hz low-pass filter
% (fourth order Butterworth; filter and filtfilt routines)
% and downsample to 663.5-Hz sampling frequency.
% A Welch spectral estimator is then applied to obtain the PSD
% (MATLAB Signal Processing Toolbox, spectrum.welch,
% using a single Hamming window taper and 50% overlapping 200-ms time windows).
spectrumParams.err= 0; % error calculation
% [1 p] - Theoretical error bars;
% [2 p] - Jackknife error bars eg [2 0.05];
% [0 p] or 0 - no error bars
spectrumParams.trialave=0; % trial (or channel) average
% 1 average over trialData/channels
% 0 don't average
movingWin=[0.5 0.05]; % moving window
dBrange=[0 35];
% plot one channel / trial
% [spectrum,timeVals,freqVals] = mtspecgramc(LFPdata(:,1), movingWin, params);
% figure;colormap(jet);
% imagesc(timeVals,freqVals,10*log10(spectrum)'); axis xy;
% each channel / trial separately
[spectrum,timeVals,freqVals] = mtspecgramc(LFP_Data, movingWin, spectrumParams);
figure;colormap(jet);
for chNum=1:size(LFP_Data,2)
subplot(ceil(size(LFP_Data,2)/4),4,chNum)
imagesc(timeVals,freqVals,10*log10(spectrum(:,:,chNum))',dBrange); axis xy;
title(['Channel ' num2str(chNum)])
end
cbH=colorbar;
set(cbH, 'Position', [.92 .11 .03 .8150]); ylabel(cbH, 'Spectrum dB')
invAxH=axes('position',[.1 .1 .85 .85],'visible','off');
xlabel('Time (s)','visible','on','FontName','Helvetica','FontSize',14);
ylabel('Frequency (Hz)','visible','on','FontName','Helvetica','FontSize',14);
title(['Spectrograms across channels. Antidromic VPM->PrV. ' stimParams],'visible','on','FontName','Helvetica','FontSize',15);
fNameText=text(min(get(gca,'xlim'))-0.1, max(get(gca,'ylim'))+0.04, fileName);
set(fNameText,'FontName','Helvetica','FontSize',6,'Interpreter','none');
% average LFP across channels / trialData
spectrumParams.trialave=1;
movingWin=[0.1 0.01]; % moving window
[spectrum,timeVals,freqVals] = mtspecgramc(LFP_Data, movingWin, spectrumParams);
figure;colormap(jet);
% subplot(10,1,2:10);
imagesc(timeVals*1000,freqVals,10*log10(spectrum)',dBrange); axis xy; cbH=colorbar; ylabel(cbH, 'Spectrum dB');
xlabel('Time (s)','FontName','Helvetica','FontSize',14);
ylabel('Frequency (Hz)','FontName','Helvetica','FontSize',14);
box off; %axis(gca,'tight');
set(gca,'Color','white','TickDir','out','FontName','Helvetica','FontSize',14);
spectrumPosition=get(gca,'position');
% xLims=get(gca,'xlim');
yLims=get(gca,'ylim');
set(gca,'ylim',[-4 yLims(2)]);
fNameText=text(min(get(gca,'xlim'))-10, max(get(gca,'ylim'))+7, fileName);
set(fNameText,'FontName','Helvetica','FontSize',6,'Interpreter','none');
% plot pulse
% subplot(10,1,1);
% axes('position',spectrumPosition,'visible','off')
% set(gca,'position',[pulsePosition(1), pulsePosition(2) spectrumPosition(3) pulsePosition(4)]);
trialData.start(:,3)=(trialData.start(:,2)-(trialData.startClockTime/30));
trialData.end(:,3)=(trialData.end(:,2)-(trialData.startClockTime/30));
% too small!
for TTLNum=1:size(trialData.start,1)
patch([trialData.start(TTLNum,3):trialData.end(TTLNum,3),...
fliplr(trialData.start(TTLNum,3):trialData.end(TTLNum,3))],...
[ones(1,trialData.end(TTLNum,3)-trialData.start(TTLNum,3)+1)*(yLims(1)-1),...
ones(1,trialData.end(TTLNum,3)-trialData.start(TTLNum,3)+1)*(yLims(1)-2)],...
[0 0 0],'EdgeColor','black','FaceAlpha',1); %[0.3 0.75 0.93]
end
patch([trialData.start(1,3):trialData.end(end,3),...
fliplr(trialData.start(1,3):trialData.end(end,3))],...
[ones(1,trialData.end(end,3)-trialData.start(1,3)+1)*(yLims(1)-2),...
ones(1,trialData.end(end,3)-trialData.start(1,3)+1)*(yLims(1)-4)],...
[0.3 0.75 0.93],'EdgeColor','none','FaceAlpha',0.5);
% set(gca,'xlim',xLims,'ylim',[-4 yLims(2)]);
title(['Average LFP across channels. Antidromic VPM->PrV. ' stimParams],'FontName','Helvetica','FontSize',15);
box off;
% set(gca,'Color','white','XColor','white', 'YColor','white','XTick',[],'YTick',[]);
% set(gca,'Color','white', 'XTick',[],'YTick',[],'Visible','off');
set(gca,'XTickLabel', num2str(cellfun(@(label) str2double(label)*10,get(gca,'XTickLabel'))))
% set(gca,'XTickLabel','')
% Pulse-triggered average
trialData.start=single(trialData.start)/1000;
trialData.end=single(trialData.end)/1000;
trialData.startClockTime=single(trialData.startClockTime);
dBrange=[10 30];
spectrumParams.trialave=1; %Average across trials
win=[1 1]; %1 sec before to 1 sec after cue
movingWin=[0.05 0.005]; % moving window
[spectrum,timeVals,freqVals] = mtspecgramtrigc(LFP_Data(:,1),trialData.start(:,3),win,movingWin,spectrumParams);
figure
imagesc(timeVals-win(1),freqVals,10*log10(spectrum'),dBrange)
axis xy %Flip Y-axis
set(gca,'Color','white','TickDir','out','FontName','Helvetica','FontSize',14);
xlabel('Time (s)','FontName','Helvetica','FontSize',14);
ylabel('Frequency (Hz)','FontName','Helvetica','FontSize',14);
box off; %axis(gca,'tight');
title('Pulse-triggered LFP average','FontName','Helvetica','FontSize',15);
set(gca,'XTick',-1:0.5:1)
cbH=colorbar; ylabel(cbH, 'Spectrum dB');
fNameText=text(min(get(gca,'xlim'))-0.3, max(get(gca,'ylim'))+8, fileName);
set(fNameText,'FontName','Helvetica','FontSize',6,'Interpreter','none');
%% Gamma power estimation
% To estimate changes in gamma power on behavioral time scales,
% a spectrogram is constructed for each LFP trace using the multitaper method
% which estimates the spectral power S(f) in a finite,
% sliding time window by averaging over Fourier transforms
% (discrete Fourier transforms evaluated using the Fast Fourier Transform algorithm on zero-padded data)
% obtained from each of a set of K orthogonal tapers applied to the data.
% The tapers are the first K functions that optimize spectral concentration
% (the tradeoff between broadband and narrowband bias inherent in spectral estimation),
% known as Slepians. We use the Chronux mtspecgramc function, with the following parameters:
% window size, 0.5 s; time step, 50 ms; five tapers; bandwidth 6 Hz.
% From the resulting spectrogram, power in the 45–55 Hz frequency range is averaged
% to obtain a “gamma-50” time series which could then be analyzed as a function of time and spatial location.
% Average power in the 70–85 Hz range is used for “gamma-80”.
%% Spike phase estimation
% To obtain the mean phase angle of spiking relative to ongoing gamma oscillations,
% LFPs are first band-pass filtered (fourth order Chebyshev, r = 0.5,
% MATLAB filter and filtfilt routines; 45–55 Hz for gamma-50, 70–85 Hz for gamma-80)
% before a Hilbert transform is applied to obtain the instantaneous phase angle.
% A histogram of spike counts in each of 10° phase bins is constructed,
% and Rayleigh’s r test used to determine the significance of deviations
% from the uniform distribution (Fisher, 1993 ).