-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregation.py
383 lines (314 loc) · 11.6 KB
/
aggregation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import numpy as np
import networkx as nx
from skimage import measure
from itertools import combinations
__all__ = [
'mask_aggregation',
'aggregated_instance_segmentation'
]
def box_area(boxes):
"""
Calculates the area of an array of boxes
Arguments:
----------
boxes: Array of shape (n, 4). Where coordinates
are (y1, x1, y2, x2).
Returns:
--------
box_areas. Array of shape (n,).
"""
height = boxes[:, 2] - boxes[:, 0]
width = boxes[:, 3] - boxes[:, 1]
return height * width
def pairwise_box_intersection(boxes):
"""
Calculates the pairwise overlaps with a set of
bounding boxes.
Arguments:
----------
boxes: Array of shape (n, 4). Where coordinates
are (y1, x1, y2, x2).
Returns:
--------
box_overlaps. Array of shape (n, n).
"""
# separate boxes into coordinates arrays
[y_min, x_min, y_max, x_max] = np.split(boxes, 4, axis=1)
# find top and bottom coordinates of overlapping area
all_pairs_min_ymax = np.minimum(y_max, np.transpose(y_max))
all_pairs_max_ymin = np.maximum(y_min, np.transpose(y_min))
intersect_heights = np.maximum(
np.zeros(all_pairs_max_ymin.shape),
all_pairs_min_ymax - all_pairs_max_ymin
)
# find left and right coordinates of the overlapping area
all_pairs_min_xmax = np.minimum(x_max, np.transpose(x_max))
all_pairs_max_xmin = np.maximum(x_min, np.transpose(x_min))
intersect_widths = np.maximum(
np.zeros(all_pairs_max_xmin.shape),
all_pairs_min_xmax - all_pairs_max_xmin
)
return intersect_heights * intersect_widths
def pairwise_box_iou(boxes):
"""
Calculates the pairwise intersection-over-union
within a set of bounding boxes.
Arguments:
----------
boxes: Array of shape (n, 4). Where coordinates
are (y1, x1, y2, x2).
Returns:
--------
box_ious. Array of shape (n, n).
"""
intersect = pairwise_box_intersection(boxes) # (n, n)
# union is the difference between the sum of
# areas and the intersection
area = box_area(boxes)
pairwise_area = area[:, None] + area[None, :] # (n, n)
union = pairwise_area - intersect
return intersect / union
def merge_boxes(box1, box2):
"""
Merge boxes into a single large box.
"""
ymin1, xmin1, ymax1, xmax1 = box1
ymin2, xmin2, ymax2, xmax2 = box2
return np.array([
min(ymin1, ymin2),
min(xmin1, xmin2),
max(ymax1, ymax2),
max(xmax1, xmax2)
])
def crop_and_binarize(mask, box, label):
"""
Crops and binarizes an instance mask
around a particular label.
"""
ymin, xmin, ymax, xmax = box
return mask[ymin:ymax, xmin:xmax] == label
def mask_iou(mask1, mask2):
"""
Computes the intersection-over-union between two
binary segmentation masks.
"""
intersection = np.count_nonzero(np.logical_and(mask1, mask2))
union = np.count_nonzero(np.logical_or(mask1, mask2))
return intersection / union
def mask_ioa(mask1, mask2):
"""
Computes the intersection-over-area between two
binary segmentation masks.
"""
intersection = np.count_nonzero(np.logical_and(mask1, mask2))
area = np.count_nonzero(mask1)
return intersection / area
def calculate_clique_ious(G, clique1, clique2):
"""
Computes the average IoU between all instances in clique1
and clique 2.
"""
all_ious = []
for node1 in clique1:
for node2 in clique2:
if G.has_edge(node1, node2):
all_ious.append(G[node1][node2]['iou'])
else:
# iou too small to have an edge, so it's 0
all_ious.append(0.)
return sum(all_ious) / len(all_ious)
def create_clique_graph(G, iou_threshold, min_clique_iou=0.1):
"""
Creates a graph where each node represents a clique
of overlapping objects in instance segmentations of
the same image.
"""
# get a list of edges to drop from the graph
drop_edges = []
for (u, v, d) in G.edges(data=True):
if d['iou'] < iou_threshold:
drop_edges.append((u, v))
# create a new graph with edges removed
H = G.copy()
for edge in drop_edges:
H.remove_edge(*edge)
# make each connected component (i.e. clique)
# in H a node in a new graph
clique_graph = nx.Graph()
for i,clique in enumerate(nx.connected_components(H)):
clique_graph.add_node(i, clique=clique)
# edge weights are average IoUs between pairs within
# separate cliques
clique_nodes = list(clique_graph.nodes)
for i,node1 in enumerate(clique_nodes):
for j,node2 in enumerate(clique_nodes[i+1:]):
clique1 = clique_graph.nodes[node1]['clique']
clique2 = clique_graph.nodes[node2]['clique']
clique_iou = calculate_clique_ious(G, clique1, clique2)
if clique_iou >= min_clique_iou:
clique_graph.add_edge(node1, node2, iou=clique_iou)
return clique_graph
def pull_clique(G, src, dst):
"""
Pulls instances from one clique into another clique
and then removes the edge connecting the cliques.
"""
# merge clique from src to dst
src_clique = G.nodes[src]['clique']
G.nodes[dst]['clique'] = G.nodes[dst]['clique'].union(src_clique)
G.remove_edge(src, dst)
return G
def merge_cliques(G):
"""
Merges or splits instances within
a clique of overlapping object labelmaps.
"""
H = G.copy()
while len(H.edges()) > 0:
# sorted nodes by the number of neighbors
most_connected = sorted(
H.nodes, key=lambda x: len(list(H.neighbors(x))), reverse=True
)[0]
# get neighbors of the most connected node
neighbors = list(H.neighbors(most_connected))
# sort neighbors by the size of their cliques
neighbors = sorted(
neighbors, key=lambda x: len(H.nodes[x]['clique']), reverse=True
)
most_connected_clique = H.nodes[most_connected]['clique']
is_pushed = False
for neighbor in neighbors:
if len(H.nodes[neighbor]['clique']) > len(most_connected_clique):
pull_clique(H, most_connected, neighbor)
is_pushed = True
elif is_pushed:
pull_clique(H, most_connected, neighbor)
else:
break
if is_pushed:
H.remove_node(most_connected)
else:
# push to neighbors with larger cliques
neighbors = list(H.neighbors(most_connected))
neighbors = sorted(
neighbors, key=lambda x: len(H.nodes[x]['clique'])
)
# pull from neighbors with smaller or equal cliques
for neighbor in neighbors:
most_connected_clique = H.nodes[most_connected]['clique']
pull_clique(H, neighbor, most_connected)
H.remove_node(neighbor)
return H
def mask_aggregation(masks, overlap_thr=0.1):
"""
Takes a list of instance segmentation masks
and returns a list of vote count maps. There is
one map generated for each potential object instance.
Arguments:
-----------
masks (List[np.ndarray]): List of (h, w) instance
segmentation masks (each object has a different label).
overlap_thr (Float): Maximum overlap (from 0-1) allowed
between potential objects. Any pair of instances that exceed
this overlap threshold will be put into the same clique.
Returns:
---------
instance_scores (List[np.ndarray]): List of (h, w) where
each array has values from 0 to len(masks). Values represent
the number of votes that a given pixel received.
"""
# consensus segmentation generation
# generate bounding boxes for all instances
mask_indices = []
mask_labels = []
detection_boxes = []
for i, mask in enumerate(masks):
rps = measure.regionprops(mask)
mask_indices.extend([i] * len(rps))
mask_labels.extend([rp.label for rp in rps])
detection_boxes.extend([rp.bbox for rp in rps])
# return mask of all zeros if no detections
if not detection_boxes:
return [np.zeros_like(masks[0])]
mask_indices = np.array(mask_indices)
mask_labels = np.array(mask_labels)
detection_boxes = np.array(detection_boxes)
n_detections = len(detection_boxes)
# calculate ious between pairs of boxes
# and return indices of matching pairs
box_matches = np.array(pairwise_box_iou(detection_boxes).nonzero()).T
# filter out boxes from the same annotator
r1_match_ann = mask_indices[box_matches[:, 0]]
r2_match_ann = mask_indices[box_matches[:, 1]]
box_matches = box_matches[r1_match_ann != r2_match_ann]
# remove duplicates (because order of items in pair doesn't matter)
box_matches = np.sort(box_matches, axis=-1)
box_matches = np.unique(box_matches, axis=0)
graph = nx.Graph()
for node_id in range(len(mask_labels)):
graph.add_node(node_id)
# iou to weighted edges
for r1, r2 in zip(box_matches[:, 0], box_matches[:, 1]):
# determine instance labels by mask
mask1 = masks[mask_indices[r1]]
l1 = mask_labels[r1]
box1 = detection_boxes[r1]
mask2 = masks[mask_indices[r2]]
l2 = mask_labels[r2]
box2 = detection_boxes[r2]
# large enclosing box for both instances
box = merge_boxes(box1, box2)
mask1 = crop_and_binarize(mask1, box, l1)
mask2 = crop_and_binarize(mask2, box, l2)
pair_iou = mask_iou(mask1, mask2)
if pair_iou >= overlap_thr:
graph.add_edge(r1, r2, iou=pair_iou)
instance_scores = []
for comp in nx.connected_components(graph):
sg = graph.subgraph(comp)
clique_graph = create_clique_graph(sg, 0.75)
clique_graph = merge_cliques(clique_graph)
for node in clique_graph.nodes:
clique = clique_graph.nodes[node]['clique']
instance = np.zeros_like(masks[0]).astype(np.float32)
# add all masks in the group together
# to get a confidence mask for each
for r in clique:
mask = masks[mask_indices[r]]
label = mask_labels[r]
instance += (mask == label).astype(np.float32) / len(masks)
instance_scores.append(instance)
return instance_scores
def aggregated_instance_segmentation(aggregated_masks, vote_thr=0.5, start=1):
"""
Merges a list of masks into an instance segmentation.
Arguments:
----------
aggregated_masks: List of n x (h, w) confidence aggregated masks.
E.g. output from mask_aggregation function.
vote_thr: Integer. Threshold number of votes over which
to mark a pixel as part of a segmentation. Default 0.5.
start: Integer. The label_id to start at for labeling the
instances sequentially.
Returns:
--------
instance_segmentation: Array of (h, w) with each detected mitochondrion
given a different label.
"""
mask_shape = aggregated_masks[0].shape
instance_segmentation = np.zeros(mask_shape, dtype=np.int32)
# add each detection with an new label
for mask in aggregated_masks:
# threshold the mask
mask = mask >= vote_thr
# relabel in case new connected
# components fall out
mask = measure.label(mask)
# number and values of new labels
# excluding background value of 0
mask_labels = np.unique(mask)[1:]
for ml in mask_labels:
ml_mask = mask == ml
instance_segmentation[ml_mask] = start
start += 1
return instance_segmentation