-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdataio.py
347 lines (264 loc) · 12.6 KB
/
dataio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import torch
import torch.nn.functional as F
import torchvision
from torchvision.transforms import Resize, Compose, ToTensor
from torchvision.datasets.utils import download_file_from_google_drive
from torchmeta.datasets.utils import get_asset
import matplotlib.pyplot as plt
import numpy as np
#import trimesh
from pathlib import Path
import pickle
import os
import numpy as np
from PIL import Image
import os
import io
import json
import h5py
from tqdm.autonotebook import tqdm
import scipy
from torchmeta.utils.data import Task, MetaDataset
import math
from skimage import measure
def get_mgrid(sidelen):
# Generate 2D pixel coordinates.
pixel_coords = np.stack(np.mgrid[:sidelen,:sidelen], axis=-1)[None,...].astype(np.float32)
pixel_coords /= sidelen
pixel_coords -= 0.5
pixel_coords = torch.Tensor(pixel_coords).view(-1, 2)
return pixel_coords
def lin2img(tensor):
batch_size, num_samples, channels = tensor.shape
sidelen = np.sqrt(num_samples).astype(int)
return tensor.permute(0,2,1).view(batch_size, channels, sidelen, sidelen)
class MNIST(torch.utils.data.Dataset):
def __init__(self, split, selected_digits=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
transform=None, target_transform=None):
super().__init__()
assert split in ['train', 'test', 'val'], "Unknown split"
self.mnist = torchvision.datasets.MNIST('./datasets/MNIST', train=True if split in ['train', 'val'] else False,
download=True, transform=transform, target_transform=target_transform)
# filter by selected numbers
idx = [(x in selected_digits) for x in self.mnist.targets]
self.mnist.targets = self.mnist.targets[idx]
self.mnist.data = self.mnist.data[idx]
# Take 10% of training dataset and create a validation dataset
if split in ['train', 'val']:
# Split into train and val splits
torch.manual_seed(0)
num_train = int(0.9 * len(self.mnist))
num_val = len(self.mnist) - num_train
train_dataset, val_dataset = torch.utils.data.random_split(self.mnist, [num_train, num_val])
self.mnist = train_dataset if split=='train' else val_dataset
def __len__(self):
return len(self.mnist)
def __getitem__(self, idx):
return self.mnist[idx]
class MultiMNIST(torch.utils.data.Dataset):
filename = '{0}_data.hdf5'
filename_labels = '{0}_labels.json'
def __init__(self, split, selected_classes,
folder, gdrive_id, zip_filename, zip_md5, image_folder):
self.gdrive_id = gdrive_id
self.image_folder = image_folder
self.folder = folder
self.zip_md5 = zip_md5
self.zip_filename = zip_filename
self.root = os.path.join('./datasets/', self.folder)
self.split_filename = os.path.join(self.root,
self.filename.format(split))
self.split_filename_labels = os.path.join(self.root,
self.filename_labels.format(split))
self.download()
self.data_file = h5py.File(self.split_filename, 'r')
self.data = self.data_file['datasets']
if selected_classes:
self.selected_classes = selected_classes
else:
with open(self.split_filename_labels, 'r') as f:
self.selected_classes = json.load(f)
self.concat_data, self.labels = list(), list()
for int_class, string_class in enumerate(self.selected_classes):
sub_dataset = self.data[string_class]
self.concat_data.append(sub_dataset)
self.labels.extend([int_class]*len(sub_dataset))
self.dataset = torch.utils.data.ConcatDataset(self.concat_data)
def __getitem__(self, index):
image = Image.open(io.BytesIO(self.dataset[index]))
return image, self.labels[index]
def __len__(self):
return len(self.labels)
def _check_integrity(self):
return (os.path.isfile(self.split_filename)
and os.path.isfile(self.split_filename_labels))
def download(self):
import zipfile
import shutil
import glob
if self._check_integrity():
return
zip_filename = os.path.join(self.root, self.zip_filename)
if not os.path.isfile(zip_filename):
download_file_from_google_drive(self.gdrive_id, self.root,
self.zip_filename, md5=self.zip_md5)
zip_foldername = os.path.join(self.root, self.image_folder)
if not os.path.isdir(zip_foldername):
with zipfile.ZipFile(zip_filename, 'r') as f:
for member in tqdm(f.infolist(), desc='Extracting '):
try:
f.extract(member, self.root)
except zipfile.BadZipFile:
print('Error: Zip file is corrupted')
for split in ['train', 'val', 'test']:
filename = os.path.join(self.root, self.filename.format(split))
if os.path.isfile(filename):
continue
labels = get_asset(self.folder, '{0}.json'.format(split))
labels_filename = os.path.join(self.root,
self.filename_labels.format(split))
with open(labels_filename, 'w') as f:
json.dump(labels, f)
image_folder = os.path.join(zip_foldername, split)
with h5py.File(filename, 'w') as f:
group = f.create_group('datasets')
dtype = h5py.special_dtype(vlen=np.uint8)
for i, label in enumerate(tqdm(labels, desc=filename)):
images = glob.glob(os.path.join(image_folder, label,
'*.png'))
images.sort()
dataset = group.create_dataset(label, (len(images),),
dtype=dtype)
for i, image in enumerate(images):
with open(image, 'rb') as f:
array = bytearray(f.read())
dataset[i] = np.asarray(array, dtype=np.uint8)
if os.path.isdir(zip_foldername):
shutil.rmtree(zip_foldername)
class DoubleMNIST(MultiMNIST):
def __init__(self, split, selected_classes=None):
super().__init__(split=split,
selected_classes=selected_classes,
folder='doublemnist',
gdrive_id='1MqQCdLt9TVE3joAMw4FwJp_B8F-htrAo',
zip_filename='double_mnist_seed_123_image_size_64_64.zip',
zip_md5='6d8b185c0cde155eb39d0e3615ab4f23',
image_folder='double_mnist_seed_123_image_size_64_64')
class TripleMNIST(MultiMNIST):
def __init__(self, split, selected_classes=None):
super().__init__(split=split,
selected_classes=selected_classes,
folder='triplemnist',
gdrive_id='1xqyW289seXYaDSqD2jaBPMKVAAjPP9ee',
zip_filename='triple_mnist_seed_123_image_size_84_84.zip',
zip_md5='9508b047f9fbb834c02bc13ef44245da',
image_folder='triple_mnist_seed_123_image_size_84_84')
class SignedDistanceTransform:
def __call__(self, img_tensor):
# Threshold.
img_tensor[img_tensor<0.5] = 0.
img_tensor[img_tensor>=0.5] = 1.
# Compute signed distances with distance transform
img_tensor = img_tensor.numpy()
neg_distances = scipy.ndimage.morphology.distance_transform_edt(img_tensor)
sd_img = img_tensor - 1.
sd_img = sd_img.astype(np.uint8)
signed_distances = scipy.ndimage.morphology.distance_transform_edt(sd_img) - neg_distances
signed_distances /= float(img_tensor.shape[1])
signed_distances = torch.Tensor(signed_distances)
return signed_distances, torch.Tensor(img_tensor)
class SignedDistanceWrapper(torch.utils.data.Dataset):
def __init__(self, img_dataset, size=(256,256), level_set_points=512):
self.transform = Compose([
Resize(size),
ToTensor(),
SignedDistanceTransform(),
])
self.img_dataset = img_dataset
self.meshgrid = get_mgrid(size[0])
self.im_size = size
self.level_set_points = level_set_points
def __len__(self):
return len(self.img_dataset)
def __getitem__(self, item):
img, digit_class = self.img_dataset[item]
signed_distance_img, binary_image = self.transform(img)
signed_distance_img = signed_distance_img.reshape((-1, 1))
# Compute the level set
binary_image -= 0.5
level_set = np.concatenate(measure.find_contours(binary_image.view(self.im_size).numpy(), 0.4), axis=0)
level_set = torch.Tensor(level_set)
level_set /= self.im_size[0]
level_set -= 0.5
num_random_points = self.level_set_points - level_set.shape[0]
random_points = torch.zeros(num_random_points, 2)
level_set_gt = torch.zeros(level_set.shape[0])
random_points_gt = torch.ones(num_random_points) * -1.
all_points = torch.cat((level_set, random_points), dim=0)
all_gt = torch.cat((level_set_gt, random_points_gt), dim=0)[..., None]
observation_dict = {'idx':item, 'coords':self.meshgrid, 'img':binary_image, 'level_set':all_points}
gt_dict = {'sds':signed_distance_img, 'digit_class':digit_class, 'img':binary_image, 'ls_sds':all_gt}
return observation_dict, gt_dict
def pack_dataset(dataset, path, max_length=float('Inf')):
"""
Save a dataset to a pickled list. Specify max_length to a number e.g. 10 if
you only want a portion of the dataset.
"""
data = []
with tqdm(total=min(max_length, len(dataset)), desc='Buffering Dataset') as pbar:
for i, d in enumerate(dataset):
if i >= max_length:
break
pbar.update(1)
data.append(d)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, 'wb') as f:
pickle.dump(data, f)
class BufferDataset(torch.utils.data.Dataset):
"""
Load a saved dataset from a filepath.
max_length gives the maximum items to buffer--e.g. 1000 if you only want the first 1000 MNIST digits.
Leave off if you want all 60000.
force_reload=True deletes the dataset and regenerates it, useful if you've changed the dataset. Otherwise,
loads dataset from saved file.
"""
def __init__(self, dataset, max_length=float('Inf'), force_reload=False, save_path=None, filename=None):
super().__init__()
if not save_path:
max_len_str = '' if max_length == float('Inf') else '-' + str(max_length)
if not filename:
filename = f'{dataset.__class__.__name__}{max_len_str}'
save_path = f'datasets/{filename}'
if force_reload and os.path.exists(save_path):
os.remove(save_path)
if not os.path.exists(save_path):
pack_dataset(dataset, save_path, max_length)
with open(save_path, 'rb') as f:
self.data = pickle.load(f)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class MetaSplitter(torch.utils.data.Dataset):
def __init__(self, metadataset, dense=True, mode='train', num_samples=64**2//2):
self.dataset = metadataset
self.dense = dense
self.mode = mode
self.num_samples = num_samples
def __len__(self):
return len(self.dataset)
def __getitem__(self, item):
sample = self.dataset[item]
if self.dense:
context_tuple = sample[0]['coords'], sample[1]['sds']
else:
context_tuple = sample[0]['level_set'], sample[1]['ls_sds']
if self.mode == 'train':
# If training mode, we only sample num_samples inputs to condition on.
all_inputs_targets = torch.cat(context_tuple, dim=1)
context_idcs = np.random.choice(all_inputs_targets.shape[0], self.num_samples, replace=True)
sampled_inputs_targets = all_inputs_targets[context_idcs]
context_inputs = sampled_inputs_targets[:, :2]
context_targets = sampled_inputs_targets[:, 2:]
context_tuple = context_inputs, context_targets
return {'train':context_tuple, 'test':(sample[0]['coords'], sample[1]['sds'], sample[1]['digit_class'])}