-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathday_16a.cpp
213 lines (196 loc) · 6.67 KB
/
day_16a.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include <algorithm>
#include <fstream>
#include <iostream>
#include <queue>
#include <regex>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
// #include <cassert>
struct Node_dist_pair {
Node_dist_pair(const std::string& node, const int dist) : node(node), dist(dist) {}
Node_dist_pair& operator = (const Node_dist_pair&) = default;
// Node_dist_pair&& operator = (Node_dist_pair&&) = default;
std::string node;
int dist;
bool operator < (const Node_dist_pair& np) const {
return dist < np.dist;
}
bool operator > (const Node_dist_pair& np) const {
return dist > np.dist;
}
bool operator == (const Node_dist_pair& np) const {
return node == np.node;
}
};
struct Comparator {
bool operator() (const Node_dist_pair& np1, const Node_dist_pair& np2) const {
return np1.dist > np2.dist;
}
};
std::unordered_map<std::string, int> find_distances(
std::unordered_map<std::string, std::vector<std::string>>& map,
const std::string source
) {
std::unordered_map<std::string, int> distances;
std::priority_queue<Node_dist_pair, std::vector<Node_dist_pair>, Comparator> pq;
std::unordered_set<std::string> visited;
pq.push(Node_dist_pair(source, 0));
while(!pq.empty()) {
const auto current = pq.top();
// std::cout<< "Popped " << current.node << ", " << current.dist << '\n';
pq.pop();
if (visited.find(current.node) != visited.end()) continue;
visited.insert(current.node);
distances[current.node] = current.dist;
for (const auto& next_node : map[current.node]) {
// std::cout<< "Pushing " << next_node << ", " << current.dist + 1 << '\n';
pq.push(Node_dist_pair(next_node, current.dist + 1));
}
}
// for (const auto & [next_node, nvm] : map) {
// assert(distances.find(next_node) != distances.end());
// }
return distances;
}
void print_path(const std::vector<std::string>& path) {
for (const auto& node : path) {
std::cout << node << ' ';
}
std::cout << '\n';
}
void dfs(std::vector<std::string>& path, std::vector<std::vector<std::string>>& paths,
std::unordered_set<std::string>& visited, std::unordered_map<std::string, int>& flow_rates,
std::unordered_map<std::string, std::vector<std::string>>& map, const std::string& current, const int time,
std::unordered_map<std::string, std::unordered_map<std::string, int>>& distances) {
if (time == 0) {
// print_path(path);
paths.push_back(path);
return;
}
for (const auto& [next_node, next_dist] : distances[current]) {
if (visited.find(next_node) != visited.end()) continue;
if (time - next_dist - 1 < 0) {
// print_path(path);
paths.push_back(path);
continue;
}
if (flow_rates[next_node] == 0) continue;
visited.insert(next_node);
path.push_back(next_node);
dfs(path, paths, visited, flow_rates, map, next_node, time - next_dist - 1, distances);
visited.erase(next_node);
path.pop_back();
}
// print_path(path);
paths.push_back(path);
return;
}
std::vector<std::vector<std::string>> get_all_paths(
std::unordered_map<std::string, int> flow_rates,
std::unordered_map<std::string, std::vector<std::string>> map,
const std::string& source,
const int time,
std::unordered_map<std::string, std::unordered_map<std::string, int>>& distances
) {
std::vector<std::vector<std::string>> paths;
std::vector<std::string> path{source};
std::unordered_set<std::string> visited;
visited.insert(source);
dfs(path, paths, visited, flow_rates, map, source, time, distances);
return paths;
}
std::vector<std::string> extract_valves(const std::string& valves_line) {
std::vector<std::string> valves;
size_t start = 0;
size_t end = valves_line.find(", ");
while (end != std::string::npos) {
valves.push_back(valves_line.substr(start, end - start));
start = end + 2;
end = valves_line.find(", ", start);
}
valves.push_back(valves_line.substr(start, end - start));
return valves;
}
int calc_flow(const std::vector<std::string>& path, int time, std::unordered_map<std::string, int>& flow_rates,
std::unordered_map<std::string, std::unordered_map<std::string, int>>& distances
) {
int score = 0;
for (int i = 0; i < path.size() - 1; i++) {
// std::cout<< path[i] << ' ';
const auto prev = path[i];
const auto next = path[i+1];
time = time - (distances[prev][next]) - 1;
score += flow_rates[next ] * time;
}
// std::cout<< '\n';
return score;
}
int main(int argc, char * argv[]) {
std::string input = "../input/day_16_input";
if (argc > 1) {
input = argv[1];
}
std::string line;
std::fstream file(input);
const std::regex pattern(R"(Valve ([A-Z]+) has flow rate=([0-9]+); ([a-z ]+) ([A-Z, ]+))");
std::vector<std::string> nodes;
std::unordered_map<std::string, int> flow_rates;
std::unordered_map<std::string, std::vector<std::string>> map;
while (std::getline(file, line)) {
if (line == "") continue;
std::smatch match;
std::regex_match(line, match, pattern);
const auto start_valve = match[1];
nodes.push_back(start_valve);
const auto flow_rate = std::stoi(match[2]);
flow_rates[start_valve] = flow_rate;
if (match[3] == "tunnel leads to valve") {
map[start_valve] = std::vector<std::string>{match[4]};
} else {
map[start_valve] = extract_valves(match[4]);
}
// std::cout<< start_valve << ": ";
// for (const auto ele : map[start_valve]) {
// std::cout<< ele << ' ';
// }
// std::cout<< '\n';
}
std::unordered_map<std::string, std::unordered_map<std::string, int>> distances;
for (const auto & node : nodes) {
distances[node] = find_distances(map, node);
}
// for (const auto& [start_node, distance] : distances) {
// std::cout<< start_node << ": ";
// for (const auto& [node, dist] : distance) {
// std::cout<< "(" << node << ", " << dist << ")" << ' ';
// }
// std::cout<< '\n';
// }
// for (const auto& [start_node, distance] : distances) {
// for (const auto& [node, dist] : distance) {
// assert (dist == distances[node][start_node]);
// for (const auto& [node2, dist2] : distances[node]) {
// assert (dist <= distances[node][node2] + distances[node2][start_node]);
// }
// }
// }
// exit (0);
const std::string start = "AA";
const int time = 30;
const auto paths = get_all_paths(flow_rates, map, start, time, distances);
int max_flow = 0;
int max_path = -1;
for (int i = 0; i < paths.size(); i++) {
const auto new_flow = calc_flow(paths[i], time, flow_rates, distances);
if (new_flow > max_flow) {
max_path = i;
max_flow = new_flow;
}
}
// std::cout << '\n';
// print_path(paths[max_path]);
std::cout << max_flow << '\n';
return 0;
}