-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_tvlad.py
331 lines (283 loc) · 15 KB
/
train_tvlad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import random
import numpy as np
import sys
import h5py
import scipy.io
import copy
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.utils.data.distributed as datadist
from tvlad import datasets
from tvlad import models
from tvlad.trainers import TVLADTrainer
from tvlad.evaluators import Evaluator, extract_features, pairwise_distance
from tvlad.utils.data import IterLoader, get_transformer_train, get_transformer_test
from tvlad.utils.data.sampler import DistributedRandomDiffTupleSampler, DistributedSliceSampler
from tvlad.utils.data.preprocessor import Preprocessor
from tvlad.utils.logging import Logger
from tvlad.pca import PCA
from tvlad.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict
from tvlad.utils.dist_utils import init_dist, synchronize, convert_sync_bn
from tvlad.utils.rerank import re_ranking
from collections import OrderedDict
import os
start_epoch = start_gen = best_recall5 = 0
def get_data(args, iters):
root = osp.join(args.data_dir, args.dataset)
dataset = datasets.create(args.dataset, root, scale=args.scale)
train_transformer = get_transformer_train(args.height, args.width)
test_transformer = get_transformer_test(args.height, args.width)
sampler = DistributedRandomDiffTupleSampler(dataset.q_train, dataset.db_train, dataset.train_pos, dataset.train_neg,
pos_num=args.pos_num, pos_pool=args.pos_pool, neg_num=args.neg_num, neg_pool=args.neg_pool)
train_loader = IterLoader(
DataLoader(Preprocessor(dataset.q_train+dataset.db_train, root=dataset.images_dir,
transform=train_transformer),
batch_size=args.tuple_size, num_workers=args.workers, sampler=sampler,
shuffle=False, pin_memory=True, drop_last=True), length=iters)
train_extract_loader = DataLoader(
Preprocessor(sorted(list(set(dataset.q_train) | set(dataset.db_train))),
root=dataset.images_dir, transform=test_transformer),
batch_size=args.test_batch_size, num_workers=args.workers,
sampler=DistributedSliceSampler(sorted(list(set(dataset.q_train) | set(dataset.db_train)))),
shuffle=False, pin_memory=True)
val_loader = DataLoader(
Preprocessor(sorted(list(set(dataset.q_val) | set(dataset.db_val))),
root=dataset.images_dir, transform=test_transformer),
batch_size=args.test_batch_size, num_workers=args.workers,
sampler=DistributedSliceSampler(sorted(list(set(dataset.q_val) | set(dataset.db_val)))),
shuffle=False, pin_memory=True)
test_loader = DataLoader(
Preprocessor(sorted(list(set(dataset.q_test) | set(dataset.db_test))),
root=dataset.images_dir, transform=test_transformer),
batch_size=args.test_batch_size, num_workers=args.workers,
sampler=DistributedSliceSampler(sorted(list(set(dataset.q_test) | set(dataset.db_test)))),
shuffle=False, pin_memory=True)
return dataset, train_loader, val_loader, test_loader, sampler, train_extract_loader
def update_sampler(sampler, model, loader, query, gallery, sub_set, rerank=False,
vlad=True, gpu=None, sync_gather=False, lambda_value=0.1):
if (dist.get_rank()==0):
print ("===> Start extracting features for sorting gallery")
features = extract_features(model, loader, sorted(list(set(query) | set(gallery))),
vlad=vlad, gpu=gpu, sync_gather=sync_gather)
distmat, _, _ = pairwise_distance(features, query, gallery)
if rerank:
distmat_qq, _, _ = pairwise_distance(features, query, query)
distmat_gg, _, _ = pairwise_distance(features, gallery, gallery)
distmat_jac = re_ranking(distmat.numpy(), distmat_qq.numpy(), distmat_gg.numpy(),
k1=20, k2=1, lambda_value=lambda_value)
distmat_jac = torch.from_numpy(distmat_jac)
del distmat_qq, distmat_gg
else:
distmat_jac = distmat
del features
if (dist.get_rank()==0):
print ("===> Start sorting gallery")
sampler.sort_gallery(distmat, distmat_jac, sub_set)
del distmat, distmat_jac
def get_model(args):
# select the network backbone for training
base_model = models.create(args.arch)
# checkpoint = load_checkpoint('logs/mbv3_large.pth.tar')
# weight = checkpoint['state_dict']
# weight2 = OrderedDict()
# for k, v in weight.items():
# weight2[k[7:]] = v
# copy_state_dict(weight2, base_model)
pool_layer = models.create('transvlad', dim=base_model.feature_dim, num_clusters=args.num_clusters)
initcache = osp.join(args.init_dir, args.arch + '_' + args.dataset + '_' + str(args.num_clusters) + '_desc_cen.hdf5')
if (dist.get_rank()==0):
print ('Loading centroids from {}'.format(initcache))
with h5py.File(initcache, mode='r') as h5:
pool_layer.clsts = h5.get("centroids")[...]
pool_layer.traindescs = h5.get("descriptors")[...]
pool_layer._init_params()
model = models.create('embedregiontrans', base_model, pool_layer, tuple_size=args.tuple_size)
if (args.syncbn):
convert_sync_bn(model)
model.cuda(args.gpu)
model = nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], output_device=args.gpu, find_unused_parameters=True
)
return model
def main():
args = parser.parse_args()
main_worker(args)
def main_worker(args):
global start_epoch, start_gen, best_recall5
init_dist(args.launcher, args)
synchronize()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.deterministic:
cudnn.deterministic = True
cudnn.benchmark = False
print("Use GPU: {} for training, rank no.{} of world_size {}"
.format(args.gpu, args.rank, args.world_size))
if (args.rank==0):
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
print("==========\nArgs:{}\n==========".format(args))
# Create data loaders
iters = args.iters if (args.iters>0) else None
dataset, train_loader, val_loader, test_loader, sampler, train_extract_loader = get_data(args, iters)
# Create model
model = get_model(args)
model_cache = get_model(args)
# Load from checkpoint
# if args.resume:
# checkpoint = load_checkpoint(args.resume)
# copy_state_dict(checkpoint['state_dict'], model)
# start_epoch = checkpoint['epoch']+1
# start_gen = checkpoint['generation']
# best_recall5 = checkpoint['best_recall5']
# if (args.rank==0):
# print("=> Start epoch {} best recall5 {:.1%}"
# .format(start_epoch, best_recall5))
# Evaluator
evaluator = Evaluator(model)
if (args.rank==0):
print("Test the initial model:")
recalls = evaluator.evaluate(val_loader, sorted(list(set(dataset.q_val) | set(dataset.db_val))),
dataset.q_val, dataset.db_val, dataset.val_pos,
vlad=True, gpu=args.gpu, sync_gather=args.sync_gather)
# Trainer
trainer = TVLADTrainer(model, model_cache, margin=args.margin**0.5,
neg_num=args.neg_num, gpu=args.gpu, temp=args.temperature)
if ((args.cache_size<args.tuple_size) or (args.cache_size>len(dataset.q_train))):
args.cache_size = len(dataset.q_train)
for gen in range(start_gen, args.generations):
# Update model cache and init model
model_cache.load_state_dict(model.state_dict())
# if args.resume:
# copy_state_dict(checkpoint['state_dict'], model)
# Optimizer
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.5)
if (gen==0):
start_epoch = args.epochs-1
for epoch in range(start_epoch, args.epochs):
sampler.set_epoch(args.seed+epoch)
if (epoch%args.step_size==0):
args.cache_size = args.cache_size * (2 ** (epoch // args.step_size))
g = torch.Generator()
g.manual_seed(args.seed+epoch)
subset_indices = torch.randperm(len(dataset.q_train), generator=g).long().split(args.cache_size)
for subid, subset in enumerate(subset_indices):
update_sampler(sampler, model, train_extract_loader, dataset.q_train, dataset.db_train, subset.tolist(),
rerank=(gen>0), vlad=True, gpu=args.gpu, sync_gather=args.sync_gather)
synchronize()
trainer.train(gen, epoch, subid, train_loader, optimizer,
train_iters=len(train_loader), print_freq=args.print_freq,
lambda_soft=(args.soft_weight if gen>0 else 0), loss_type=args.loss_type)
synchronize()
if ((epoch+1)%args.eval_step==0 or (epoch==args.epochs-1)):
recalls = evaluator.evaluate(val_loader, sorted(list(set(dataset.q_val) | set(dataset.db_val))),
dataset.q_val, dataset.db_val, dataset.val_pos,
vlad=True, gpu=args.gpu, sync_gather=args.sync_gather)
is_best = recalls[1] > best_recall5
best_recall5 = max(recalls[1], best_recall5)
if (args.rank==0):
save_checkpoint({
'state_dict': model.state_dict(),
'epoch': epoch,
'generation': gen,
'best_recall5': best_recall5,
}, is_best, fpath=osp.join(args.logs_dir, 'checkpoint'+str(gen)+'_'+str(epoch)+'.pth.tar'))
print('\n * Finished generation {:3d} epoch {:3d} recall@1: {:5.1%} recall@5: {:5.1%} recall@10: {:5.1%} best@5: {:5.1%}{}\n'.
format(gen, epoch, recalls[0], recalls[1], recalls[2], best_recall5, ' *' if is_best else ''))
lr_scheduler.step()
synchronize()
start_epoch = 0
# final inference
if (args.rank==0):
print("Performing PCA reduction on the best model:")
model.load_state_dict(load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))['state_dict'])
pca_parameters_path = osp.join(args.logs_dir, 'pca_params_model_best.h5')
pca = PCA(args.features, (not args.nowhiten), pca_parameters_path)
dict_f = extract_features(model, train_extract_loader, sorted(list(set(dataset.q_train) | set(dataset.db_train))),
vlad=True, gpu=args.gpu, sync_gather=args.sync_gather)
features = list(dict_f.values())
if (len(features)>10000):
features = random.sample(features, 10000)
features = torch.stack(features)
if (args.rank==0):
pca.train(features)
synchronize()
del features
if (args.rank==0):
print("Testing on Pitts30k-test:")
evaluator.evaluate(test_loader, sorted(list(set(dataset.q_test) | set(dataset.db_test))),
dataset.q_test, dataset.db_test, dataset.test_pos,
vlad=True, pca=pca, gpu=args.gpu, sync_gather=args.sync_gather)
synchronize()
return
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="SFRS training")
parser.add_argument('--launcher', type=str,
choices=['none', 'pytorch', 'slurm'],
default='none', help='job launcher')
parser.add_argument('--tcp-port', type=str, default='5017')
# data
parser.add_argument('-d', '--dataset', type=str, default='pitts',
choices=datasets.names())
parser.add_argument('--scale', type=str, default='30k')
parser.add_argument('--tuple-size', type=int, default=1,
help="tuple numbers in a batch")
parser.add_argument('--test-batch-size', type=int, default=64,
help="tuple numbers in a batch")
parser.add_argument('--cache-size', type=int, default=1000)
parser.add_argument('-j', '--workers', type=int, default=8)
parser.add_argument('--height', type=int, default=480, help="input height")
parser.add_argument('--width', type=int, default=640, help="input width")
parser.add_argument('--num-clusters', type=int, default=64)
parser.add_argument('--pos-num', type=int, default=10)
parser.add_argument('--pos-pool', type=int, default=20)
parser.add_argument('--neg-num', type=int, default=10,
help="negative instances for one anchor in a tuple")
parser.add_argument('--neg-pool', type=int, default=1000)
# model
parser.add_argument('-a', '--arch', type=str, default='mobilenetv3_large',
choices=models.names())
parser.add_argument('--layers', type=str, default='conv5')
parser.add_argument('--nowhiten', action='store_true')
parser.add_argument('--syncbn', action='store_true')
parser.add_argument('--sync-gather', action='store_true')
parser.add_argument('--features', type=int, default=4096)
# optimizer
parser.add_argument('--lr', type=float, default=0.001,
help="learning rate of new parameters, for pretrained ")
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=0.001)
parser.add_argument('--step-size', type=int, default=5)
# training configs
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--eval-step', type=int, default=1)
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--generations', type=int, default=4)
parser.add_argument('--loss-type', type=str, default='sare_ind')
parser.add_argument('--temperature', nargs='+', type=float, default=[0.07,0.07,0.06,0.05])
parser.add_argument('--soft-weight', type=float, default=0.5)
parser.add_argument('--iters', type=int, default=0)
parser.add_argument('--seed', type=int, default=43)
parser.add_argument('--deterministic', action='store_true')
parser.add_argument('--print-freq', type=int, default=10)
parser.add_argument('--margin', type=float, default=0.1, help='margin for the triplet loss with batch hard')
# path
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
parser.add_argument('--init-dir', type=str, metavar='PATH',
default=osp.join(working_dir, '..', 'logs'))
main()