-’

SILICON LABS

UG162: Simplicity Commander Reference

Guide

This document describes how and when to use the Command-
Line Interface (CLI) of Simplicity Commander. Simplicity
Commander supports all EFR32 Wireless SoCs, EFR32 Wireless
SoC modules (such as the MGM111 or MGM12P), EFM32 MCU
families, and EM3xx Wireless SOCs. EFM8 MCU families are not
supported at this time.

This document is intended for software engineers, hardware engineers, and release
engineers. Silicon Labs recommends that you review this document to familiarize your-
self with the CLI commands and their intended uses. You can refer to specific sections
of this document to access operational information as needed. This document also in-
cludes examples so you can gain an understanding of Simplicity Commander in action.

This document is up-to-date with Simplicity Commander version 1.9. See section
7. Software Revision History for a list of new features and commands for previous ver-
sions of the application.

Known issue in version 1.9.0

Simplicity Commander provides the ability to read, write, or erase the external flash IC
available on supported radio boards. However, this functionality may not work properly
when certain applications are running on the attached MCU. In such cases, perform a
mass erase of the MCU to restore access to the external flash IC. The MCU may be
programmed again once access to the external flash from Simplicity Commander is no
longer needed.

silabs.com | Building a more connected world.

KEY POINTS

Introduces Simplicity Commander.
Adds new features and commands.

Describes the file formats supported by
Simplicity Commander.

Includes detailed syntax of all Simplicity
Commander commands and example
command line inputs and outputs.

Table of Contents

1. Introduction. . 6
2. File Format Overview .7
2.1 Motorola S-record (s37) File Format . .7
2.2 Update Image File Formats. .7
2.3 Intel HEX-32 File Format . 8

3. General Information. . 9
3.1 Installing Simplicity Commander . . 9
3.2 Command Line Syntax .. .09
3.3 General Options ...
3.31 Help(--help).
3.3.2 Version (--version)o L.
3.3.3 Device (--device <device name>) o002
3.3.4 J-Link Connection Options .12
3.3.5 Debug Interface Configuraton . 13
3.3.6 Graphical User Interface . 13

3.4 Outputand ExitStatus ... 14
4. EFR32CustomTokens.+« o o . o 15
4.1 Introduction . A5
4.2 CustomTokenGroups .. A5
4.3 Creating Custom Token Groups . 15
4.4 DefiningTokens0
45 Memory Regions ... 0
4.6 Token File Format Description. ..Ar
4.7 Using Custom Token Files .7
4.8 Using Custom Token Files in Any Location A7

5. Security Overview A 1
51 SecurityStore8
5.2 Access Certificate .. .8
5.3 Challenge and Command Signing . 19

6. Simplicity CommanderCommands .20
6.1 Device Flashing Commands .20
6.1.1 FlashlmageFile .. .02
6.1.2 Flash Using IP Address without VerificatonandReset21
6.1.3 Flash Several Files22
6.1.4 PatchFlash23
6.1.5 Patch Using InputFile .. .24
6.1.6 FlashTokens25

6.2 Flash Verification Command .26

silabs.com | Building a more connected world. Rev. 1.8 | 2

6.3 Memory Read Commands .26

6.3.1 Print Flash Contents. ..27
6.3.2 Dump Flash ContentstoFile. .27
6.4 Token Commands.28
6.4.1 PrintTokens28
6.4.2 Dump TokenstoFile .28
6.4.3 Dump Tokens from Image File s |
6.4.4 Generate C Header Files from Token Groups P 24° |
6.5 Convert and Modify File Commands. .29
6.5.1 Combine TwoFiles .30
6.5.2 Define SpecificBytes .30
6.5.3 Define Tokens. L. 3
6.5.4 Dump File Contents. . . . e A
6.5.5 Signing an Application for Secure Boot e N 24
6.5.6 Signing an Application for Secure Boot using a Hardware Securrty Module Coe N
6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a Hardware
Security Module . . . R X
6.5.8 Adding a CRC32 for Gecko Bootloader Coe R X
6.5.9 Signing an Application for Secure Boot using an Intermedrary Certlflcate . 22
6.6 EBL Commands3
6.6.1 Print EBL Information .3
6.6.2 EBL Key Generaton .35
6.6.3 EBL File Creaton .36
6.6.4 EBL File Parsing. . . e 19
6.6.5 Memory Usage Informatron from AAT . ¥
6.7 GBLCommands L3
6.7.1 GBL File Creation . . . s Y
6.7.2 GBL File Creation with Compressmn e 1
6.7.3 Creating a GBL File for Bootloader Upgrade38
6.7.4 Creating a GBL File for Secure Element Upgrade39
6.7.5 Creating a Signed and Encrypted GBL Upgrade Image File from an Appllcatlon S . .39
6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Securrty
Module . . . e (0]
6.7.7 Creating a Slgned GBL F|Ie Usmg a Hardware Securrty Module A (0
6.7.8 GBLFileParsing.
6.7.9 GBL Key Generation .00 00
6.7.10 Generating a SigningKey . . . e
6.7.11 Generate a Signing Key Using a Hardware Securrty Module Y Y22
6.8 Kit Utilty Commands 42
6.8.1 Firmware Upgrade 42
6.8.2 Kit Information Probe . 43
6.8.3 AdapterResetCommand . 43
6.8.4 Adapter Debug Mode Command . 44
6.8.5 List Adapter IP Configuraton Command 44
6.8.6 Adapter DHCP Command. . . 2 ¥
6.8.7 Set Static IP Configuration Command e
6.9 Device Erase Commands . 45

silabs.com | Building a more connected world. Rev.1.8]| 3

6.9.1 Erase Chip. 4

6.9.2 Erase Region . . .)
6.9.3 Erase Pages in Address Range a1
6.10 Device Lock and Protection Commands .46
6.10.1 DebuglLock .. 406
6.10.2 Debug Unlock . . . P G
6.10.3 Write Protect Flash Ranges e ¥ 4
6.10.4 Write Protect Flash Region . 47
6.10.5 Disable Write Protection . 47
6.11 Device Utility Commands . o.o.o.47
6.11.1 Device Information Command .48
6.11.2 Device ResetCommand. .48
6.11.3 Device Recovery Command . . e
6.11.4 Device Z-Wave QR Code Command -)
6.12 External SPI Flash Commands . 49
6.12.1 Erase External SPI Flash Command 49
6.12.2 Read External SPI Flash Command .50
6.12.3 Write External SPI Flash Command .50
6.13 Advanced Energy Monitor Measure Command.51
6.14 Serial Wire Output Read Commands .51
6.14.1 Configure S WO Speed .. .0H4
6.14.2 Read SWO Until Timeout .5
6.14.3 Read SWO Until a MarkerIsFound .B2
6.14.4 Dump Hex Encoded SWO Qutput. .B2
6.15 NVM3 Commands . . . e & Y24
6.15.1 Read NVM3 Data From a Dewce X
6.15.2 Parse NVM3 Data . . . K
6.15.3 Initialize NVM3 Area in a F|Ie T o 7
6.15.4 Write NVM3 Data Usinga TextFile .b5
6.15.5 Write NVM3 Data Using CLI Options. .56
6.16 CTUNE Commands. .b6
6.16.1 CTUNE GetCommand .b6
6.16.2 CTUNE Set Command .57
6.16.3 CTUNE Autoset Command .57
6.17 Security Commands. Lo
6.17.1 GetDeviceStatus .58
6.17.2 Generate Key Pair. .. .5
6.17.3 Write Public Key to Device .60
6.17.4 Read Public Key from Device .60
6.17.5 Configure Lock Options .. .61
6.17.6 Lock DebugAccess .. .61
6.17.7 Secure Debug Unlock. .62
6.17.8 Disable Tamper. . . . N 1
6.17.9 Device Erase using Secure EIement N < V4
6.17.10 Disable Device Erase .67
6.17.11 Roll Challenge. .08

silabs.com | Building a more connected world. Rev. 1.8 | 4

6.17.12 Generate Example AuthorizationFile .69
6.17.13 Generate Access Certificate .M
6.17.14 Generate Unsigned Command File. .72
6.17.15 Generate Example ConfigurationFile .73
6.17.16 Write User Configuration .75
6.17.17 Read User Configuraton .76
6.17.18 Get Security Store Path. .o.TT7

6.18 Util Commands L LT
6.18.1 Key Generation. LT
6.18.2 Generatinga SigningKey00 LT
6.18.3 KeytoToken.r8
6.18.4 Generate Certificate .78
6.18.5 Sign Certificate .. 19
6.18.6 Verify Signature 19
6.18.7 Application Informaton .80

7. Software Revision History e X

7.1 Version 1.9 L s s s s st

7.2 Version 1.8ot

7.3 Version 1.7o s s s o8t

7.4 Version 1.5 L Lo

7.5 Version1.4 L. s s st

7.6 Version 1.3 L. s s, 82

7.7 Version 1.282

7.8 Version 1.1o, 82

7.9 Version 1.0 s s, 82

7.10 Version 0.25, 82

7.11 Version 0.24 Lo, 82

7.12 Version 0.22 L s s, 82

7.13 Version 0.21, 83

7.14 Version 0.16, 83

7.15 Version0.15o.o.o.o.o. . . .83

7.16 Version 0.14, 83

717 Version0.13o88

7.18 Version 0.12, 83

7.19 Version 0.11 s s s s s, s

silabs.com | Building a more connected world. Rev.1.8| 5

UG162: Simplicity Commander Reference Guide
Introduction

1. Introduction

Simplicity Commander is a single, all-purpose tool to be used in a production environment. It is invoked using a simple Command Line
Interface (CLI) that is also scriptable. Simplicity Commander enables customers to complete these essential tasks:

* Flash their own applications.
» Configure their own applications.
» Create binaries for production.

Simplicity Commander is designed to support the Silicon Labs Wireless STK and STK platforms.

The primary intended audience for this document is software engineers, hardware engineers, and release engineers who are familiar
with programming the EFR32 and EM3xx. This reference guide describes how to use the Simplicity Commander CLI. It provides gener-
al information on file formats supported by Simplicity Commander and the Silicon Labs bootloaders, and includes details on using the
Simplicity Commander commands, options, and arguments. It also includes example command line inputs and outputs so you can gain
a better understanding of how to use Simplicity Commander effectively.

silabs.com | Building a more connected world.

UG162: Simplicity Commander Reference Guide
File Format Overview

2. File Format Overview

Simplicity Commander works with different file formats: .bin, .s37, .ebl, .gbl, and .hex. Each file format serves a slightly different pur-
pose. The file formats supported by Simplicity Commander are summarized below.

2.1 Motorola S-record (s37) File Format

Silicon Labs uses the Simplicity Studio as its Integrated Development Environment (IDE) and leverages the IAR Embedded Workbench
for ARM platforms. This tool combination produces Motorola S-record files, s37 specifically, as its output. (For more information on Mo-
torola S-record file format, see http://en.wikipedia.org/wiki/S_record.) In Silicon Labs development, an s37 file contains programming
data about the built firmware and generally only represents a single piece of firmware—application firmware or bootloader firmware—
but not both. An application image in s37 format can be loaded into a supported target device using the Simplicity Commander flash
command. The s37 format can represent any combination of any byte of flash in the device. The Simplicity Commander convert com-
mand can also be used to read multiple s37 files and hex files; output an s37 file for combining multiple files into a single file; and
modify individual bytes of a file.

2.2 Update Image File Formats

An update image file provides an efficient and fault-tolerant image format for use with Silicon Labs bootloaders to update an application
without the need for special programming devices. Two image formats are supported: Gecko Bootloader (GBL) format for use with the
Silicon Labs Gecko Bootloader introduced for use with EFR32 devices and Ember Bootloader (EBL) format for use with legacy Ember
bootloaders. See UG103.6: Application Development Fundamentals: Bootloading for more details about these image file formats and
bootloader use with different platforms.

Update image files are generated by the Simplicity Commander gbl create or ebl create command. These formats can only repre-
sent firmware images; they cannot be used to capture Simulated EEPROM token data (as described by AN703: Using Simulated EE-
PROM Version 1 and Version 2 for the EM35x and EFR32 Series 1 SoC Platforms). GBL upgrade files may contain data that gets
flashed outside the main flash.

Bootloaders can receive an update image file either over-the-air (OTA) or via a supported peripheral interface, such as a serial port,
and reprogram the flash in place. Update image files are generally used in later stage development and for upgrading manufactured
devices in the field.

During development, bootloaders should be loaded onto the device using the .s37 or .hex file format. If the Gecko Bootloader with sup-
port for in-field bootloader upgrades is used, it is possible to perform a bootloader upgrade using a GBL update image. For other boot-
loaders or file formats, do not attempt to load a bootloader image onto the device as an update image.

silabs.com | Building a more connected world.

http://en.wikipedia.org/wiki/S_record

UG162: Simplicity Commander Reference Guide
File Format Overview

2.3 Intel HEX-32 File Format

Production programming uses the standard Intel HEX-32 file format. The normal development process for EFR32 chips involves creat-
ing and programming images using the s37 and ebl file formats. The s37 and ebl files are intended to hold applications, bootloaders,
manufacturing data, and other information to be programmed during development. The s37 and ebl files, though, are not intended to
hold a single image for an entire chip. For example, it is often the case that there is an s37 file for the bootloader, an s37 file for the
application, and an s37 file for manufacturing data. Because production programming is primarily about installing a single, complete
image with all the necessary code and information, the file format used is Intel HEX-32 format. While s37 and hex files are functionally
the same—they simply define addresses and the data to be placed at those addresses—Silicon Labs has adopted the conceptual dis-
tinction that a single hex file contains a single, complete image often derived from multiple s37 files. You can use the Simplicity
Commander convert command to read multiple hex files and s37 files; output a hex file for combining multiple files into a single file;
and modify individual bytes of a file.

Note: Simplicity Commander is capable of working identically with s37 and hex files. All functionality that can be performed with s37
files can be performed with hex files. Ultimately, with respect to production programming, Simplicity Commander flash command al-
lows the developer to load a variety of sources onto a physical chip. The convert command can be used to merge a variety of sources
into a final image file and modify individual bytes in that image if necessary.

The following table summarizes the inputs and outputs for the different file formats used by Simplicity Commander.

Table 2.1. File Format Summary

Outputs
hex
flash X X X X
readmem X
convert
ebl create X X X X
ebl parse X X X X

silabs.com | Building a more connected world.

UG162: Simplicity Commander Reference Guide
General Information

3.

General Information

3.1 Installing Simplicity Commander

You can install Simplicity Commander using Simplicity Studio or by downloading the standalone version from https://www.silabs.com/
products/mcu/programming-options and then completing the installation.

3.2 Command Line Syntax

To execute Simplicity Commander commands, start a Windows command window, and change to the Simplicity Commander directory.
The general command line structure in Simplicity Commander looks like this:

commander [command] [options][arguments]

where:

commander is the name of the tool.

command is one of the commands supported by Simplicity Commander, such as, flash, readmem, convert, etc. The command-spe-
cific help provides additional information on each command.

option is a keyword that modifies the operation of the command. Options are preceded with -- (double dash) as described for each
command. Some commands have single-character short versions which are preceded by — (single dash). Refer to the command-
specific help for the single-dash shorthands.

argument is an item of information provided to Simplicity Commander when it is started. An argument is commonly used when the
command takes one or more input files.

square brackets indicate optional parameters as in this example: commander flash [filename(s)] [options]
angle brackets indicate required parameters as in this example: commander readmem —output <filename>

silabs.com | Building a more connected world.

https://www.silabs.com/products/mcu/programming-options
https://www.silabs.com/products/mcu/programming-options

UG162: Simplicity Commander Reference Guide
General Information

3.3 General Options

3.3.1 Help (- - hel p)

Displays help for all Simplicity Commander commands and command-specific help for each command.
Command Line Syntax

$ commander —help

Command Line Usage Output

Simplicity Commander help displays a list of all Simplicity Commander commands. The following figure is an example.

Command Prompt

riptions for each command.

help.
on information.

e output file.

dump ns from a
Ch r file f
the current flash contents.

Figure 3.1. Simplicity Commander Help

To display help on a specific Simplicity Commander command, enter the name of the command followed by —help.
Command Line Input Example
$commander flash --help

Command Line Output Example

Simplicity Commander displays help for the flash command in the following figure.

silabs.com | Building a more connected world. Rev. 1.8 | 10

UG162: Simplicity Commander Reference Guide
General Information

E¥ Command Prompt

--help

erial number:>

Figure 3.2. Simplicity Commander Flash Command Help

3.3.2 Version (- - versi on)

Displays the version information for Simplicity Commander, J-Link DLL, and EMDLL, and a list of detected USB devices. If you use this
option in conjunction with another command or command/option, Simplicity Commander displays this extra information before any com-
mand is executed.

Command Line Syntax
$ commander —-version

Command Line Usage Output

Simplicity Commander displays version information. The following figure is an example.

JLink DLL
EMDLL W

Figure 3.3. Simplicity Commander Version Information

silabs.com | Building a more connected world. Rev. 1.8 | 11

UG162: Simplicity Commander Reference Guide
General Information

3.3.3 Device (- - devi ce <devi ce nanme>)

Specifies a target device for the command. If this option is supplied, no auto-detection of the target device is used. In some cases, such
as when using convert with the --token option, this option is required.

For convenience, Simplicity Commander attempts to parse the --device option so that a complete part number is normally not re-
quired as a command input. For example, Simplicity Commander interprets commander --device EFR32 to mean that the selected
device is an EFR32, which has implications regarding the memory layout and available features of this specific device. As another ex-
ample, Simplicity Commander interprets --device EFR32F256 as an EFR32 with 256 kB flash memory.

Using a complete part number such as --device EFR32MG1P233F256GM48 is always supported and recommended.
Command Line Syntax
$ commander <command> --device <device name>

Command Line Input Example

$ commander device info --device Cortex M3

3.3.4 J-Link Connection Options

Use the following options to select a J-Link device to connect to and use for any operation that requires a connection to a kit or debug-
ger. You can connect over IP (using the —ip option) or over USB (using the --serialno option) as shown in the following examples.
You can use only one of these options at a time. If no option is provided, Simplicity Commander attempts a connection to the only USB
connected J-Link adapter.

Command Line Syntax

$ commander <command> —-serialno <J-Link serial number>

Command Line Input Example

$ commander adapter probe —serialno 440050184

Command Line Usage

$ commander <command> —ip <IP address>

Command Line Input Example

$ commander adapter probe —ip 10.7.1.27

silabs.com | Building a more connected world. Rev. 1.8 | 12

UG162: Simplicity Commander Reference Guide
General Information

3.3.5 Debug Interface Configuration

Use the --tif and --speed options to configure the target interface and clock speed when connecting the debugger to the target de-
vice.

Simplicity Commander supports using Serial Wire Debug (SWD) or Joint Test Action Group (JTAG) as the target interface. All currently
supported Silicon Labs hardware works with SWD, while some can also be used with JTAG. Custom hardware may require JTAG to be
used.

The maximum clock speed available typically depends on the debug adapter, the target device, and the physical connection between
the two. Silicon Labs kits typically support speeds up to 1000 —8000 kHz, depending on the kit model. If the selected clock speed is
higher than what the adapter supports, the clock speed will fall back to using the highest speed it does support. You may want to select
a lower clock speed if the debug connection is unstable or not working at all when working with custom hardware with longer debug
cables or when the electrical connections are less than ideal.

If the --tif and --speed options are not used, the default configuration is SWD and 4000 kHz.

Command Line Syntax

$ commander <command> [--tif <target interface>] [—-speed <speed in kHz>]

Command Line Input Example

$ commander device info --tif SWD—-speed 1000

Command Line Output Example

Setting debug interface speed to 1000 kHz
Setting debug interface to SWD

Part Number : EFR32BG1P332F256GJ43
Die Revision o A2

Production Ver : 138

Flash Size : 256 kB

SRAM Size : 32 kB

Unique ID . 000b57fffe0934e3

DONE

3.3.6 Graphical User Interface

Displays a Graphical User Interface (GUI) for laboratory use of Simplicity Commander. The GUI can be used in the lab for such typical
tasks as:

» Flashing device images
» Upgrading Silicon Labs kit firmware and configuration
+ Setting device lock features

Command Line Syntax

$ commander

silabs.com | Building a more connected world. Rev. 1.8 | 13

UG162: Simplicity Commander Reference Guide
General Information

3.4 Output and Exit Status

The exit status of Simplicity Commander can take on a few different values. Whenever an operation completed successfully, Simplicity
Commander's exit status is 0 (zero). Any error will cause the exit status to be non-zero.

Simplicity Commander defines the following exit status codes.

Exit Status | Description

0 No error occured
-1 Input error. For example, this could be a missing command line option, non-existent command, or an invalid filename.
-2 Run time error. Used whenever anything goes wrong when executing the command. Examples include not being able to

connect to a debug adapter or flash verification failed.

Note: Some operations systems present the exit status as an unsigned integer. On these systems, -1 will be interpreted as 255, -2 as
254, and so on.

The operating system itself may create other exit codes if the application crashes. These will always be non-zero and are out of the
control of Simplicity Commander.

All errors and potential error conditions are indicated in Simplicity Commander's output in addition to the exit status. All errors are dis-
played with the prefix "ERROR:". All warnings are displayed with the prefix "WARNING:".

Any output from Simplicity Commander will always end with "DONE". This does not indicate that the operation was successful, merely
that execution has finished.

Example of an error in Windows follows.

C:\>commander device info -s 440000000

ERROR: Unable to connect with device with given serial number
ERROR: Could not open J-Link connection.

DONE

C:\>echo %errorlevel%
-2

silabs.com | Building a more connected world. Rev. 1.8 | 14

UG162: Simplicity Commander Reference Guide
EFR32 Custom Tokens

4. EFR32 Custom Tokens

4.1 Introduction

Simplicity Commander supports defining custom token groups for reading and writing. Custom tokens work just like manufacturing to-
kens, but the definition and location of the tokens is configurable to suit different requirements.

There are two different ways for Simplicity Commander to find and use custom token definition files. For Simplicity Commander to treat
the custom token file in the same way as a regular token group, the file must be placed in a specific location as described in section
4.2 Custom Token Groups.

The other option is to use the --tokendefs command line option instead of the --tokengroup option. With this method, Simplicity
Commander uses a token definition file in an arbitrary location, for example, under revision control. For more information, see section
4.8 Using Custom Token Files in Any Location.

4.2 Custom Token Groups

For Simplicity Commander to treat custom token files like regular token groups, the file must be placed in a specific tokens folder and
the filename must follow a special syntax.

The location and initialization of the tokens folder depends on the operating system used.
On Windows and Linux, the tokens folder is included in the zip file and is placed alongside the executable in the installation directory.

On Mac OS X, the folder named ~/Library/SimplicityCommander/tokens/ is generated automatically in the user's home directory
when running

commander on the command line for the first time. Running commander --help, for example, is enough to ensure that the folder with
files is created. Inside this tokens folder, there is a file named tokens-example-efr32.json. This file provides an example of the to-
ken types and locations currently supported by Simplicity Commander.

The syntax of the filename is tokens-<group name>-<architecture>.json. <group name> is the name of the custom token group
and can be any string. <architecture> is a string describing which devices the token definitions apply to. The following table lists the
supported architecture strings.

Architecture | Devices

efr32 All Series 1 EFR32 devices

efr32xg2 All Series 2 EFR32 devices

em3xx All EM3xx devices
efm32 All EFM32 devices (Series 0 and 1)
ezr32 All EZR32 devices

For example, to define the token group myapp for EFR32 Series 1 devices, the filename would be tokens-myapp-efr32. json.

4.3 Creating Custom Token Groups

To define a custom token group, copy tokens-example-efr32_json to a new file in the same directory using the following naming
convention: tokens-<groupname>-efr32.json

For example: tokens-myapp-efr32. json

To verify that Simplicity Commander sees the new file, run

$ commander tokendump --help

The name of your token group (for example, "myapp") should be listed as a supported token group like this:

--tokengroup <tokengroup> which set of tokens to use. Supported: myapp, znet

silabs.com | Building a more connected world. Rev. 1.8 | 15

UG162: Simplicity Commander Reference Guide
EFR32 Custom Tokens

4.4 Defining Tokens

Each token in the JSON file has the following properties.

Property Description
name The name of the token, which is used as an identifier when dumping or writing tokens.
page The named memory region to use for the token. For more information, see section 4.5 Memory Regions.
sizeB The size of the token in bytes.
» A token of size 1 is interpreted as an unsigned 8-bit integer.
» A token of size 2 is interpreted as an unsigned 16-bit integer.
» Atoken of size 4 is interpreted as an unsigned 32-bit integer.
* Any other size is interpreted as a byte array of the given size.
string Optional boolean. If this property is true, the token is interpreted as a zero terminated ASCII string instead of a byte
array. The maximum string length is sizeB - 1 because one byte is reserved for the zero terminator.

4.5 Memory Regions
The following values are valid data in the "page" option:
USERDATA

The user data page is a separate flash page intended for persistent data and configuration. The user data page is not erased when
disabling debug lock. It can, however, be erased by a specific page erase.

The user data page is located at address OxOFE000OQOQ. It is 2 kB on Series 1 EFR32 devices and 1 kB on Series 2 EFR32 devices.
LOCKBITSDATA

On Series 1 EFR32 devices, the lock bits page is used by the chip itself to configure flash write locks, debug lock, AAP lock, and so on.
However, the last 1.5 kB of this page is unused by the device itself and has the important property that it is erased when disabling
debug lock. A regular mass erase by the MSC—typically by executing the commander device masserase or commander flash --
masserase command—does not erase the lock bits page.

The lock bits page is located at address OXOFE04000 with size 2 kB on Series 1 EFR32 devices. Tokens in this page must use an offset
of at least 0x200 on these devices; otherwise, collisions with chip functionality can occur.

On Series 2 EFR32 devices, there is no physical lock bits page. Instead, the LOCKBITSPAGE region is defined to be the first 2 kB of
the last flash page in the main flash block. This maintains backwards compatibility, while still ensuring that any data in this region is
erased when the device is erased during debug unlock.

silabs.com | Building a more connected world. Rev. 1.8 | 16

UG162: Simplicity Commander Reference Guide
EFR32 Custom Tokens

4.6 Token File Format Description

A token file declares what values are programmed for manufacturing tokens on the chip. Lines are composed of one of the following
forms:

<token-name> : <data>

<token-name> : IERASE!

Follow these guidelines when using a token file:

» Omitted tokens are left untouched and not programmed on the chip.

» Token names are case insensitive.

» All integer values are interpreted as hexadecimal numbers in BIG-endian format and must be prefixed with '0x'.
» Blank lines and lines beginning with # (hashtag) are ignored.

» Byte arrays are given in hexadecimal format without a leading '0x'".

» Specifying IERASE! for the data sets that token to all OxFF.

» The token data can be in one of three main forms: byte-array, integer, or string.
» Byte arrays are a series of hexadecimal numbers of the required length.

* Integers are BIG-endian hexadecimal numbers that must be prefixed with '0x'.
» String data is a quoted set of ASCII characters.

4.7 Using Custom Token Files

Refer to 4.1 Introduction for a definition of custom token files and where they should be located for Simplicity Commander to find them
automatically. To use a custom token file located in the tokens folder, run Simplicity Commander with a --tokengroup option corre-
sponding to the name of the JSON file. For example, if the file was named tokens-myapp-efr32. json, use this option:

--tokengroup myapp

To create a text file useful as input to the flash or convert commands, the easiest way is to start by dumping the current data from a
device.

For example:

$ commander tokendump -s 440050148 --tokengroup myapp --outfile mytokens.txt

mytokens.txt can then modified to have the desired content, and then used when flashing devices or creating images in this way:

$ commander flash -s 440050148 --tokengroup myapp --tokenfile mytokens.txt

To be able to read the custom token data from an application, Simplicity Commander provides the tokenheader command, which gen-
erates a C header file that can be included in an application. See section 6.4.4 Generate C Header Files from Token Groups for details.
4.8 Using Custom Token Files in Any Location

In some cases, it is more convenient to have the custom token defintions file somewhere in the file system (for example, if it is placed
under revision control). Simplicity Commander supports this functionality with the --tokendefs option which refers to a JSON file any-
where in the file system. Use it instead of the --tokengroup option.

For example:

$ commander tokendump --tokendefs my_tokens.json --outfile mytokens.txt
$ commander flash --tokendefs my_tokens.json --tokenfile mytokens.txt

silabs.com | Building a more connected world. Rev. 1.8 | 17

UG162: Simplicity Commander Reference Guide
Security Overview

5. Security Overview

This chapter describes essential security features in Simplicity Commander.

5.1 Security Store

Security Store is the location where all files generated and used by the security commands in Simplicity Commander are stored. You
can find the path to Security Store with the commander security getpath command. Unless the --nostore option is used with securi-
ty commands, Simplicity Commander will store all keys, certificates, and configuration files seen in Security Store. Descriptions of the
files appear below.

» access_certificate.bin — certificate delegating permission to unlock debug access of a device.

« archive folder — folder used to store all outdated files (for example, all files in the challenge folder are moved here when a challenge
is rolled).

« cert_key.pem — private key used to sign unlock token.
« cert_pubkey.pem — public key used in certificate. Public key corresponding to cert_key.pem.
« certificate_authorization.json — configuration file used to define authorizations given by access certificate. May be edited.
» challenge_xxx folder — folder used to store files related to a challenge.
» unlock_payload_xxx.bin — payload used to unlock secure debug access.
» unlock_command_to_be_signed_dd_mm_yyyy.bin — command token that needs to be signed with cert_key.pem
« command_key.pem — private command key used to sign access certificate.
« command_pubkey.pem — public command key stored on device. Public key corresponding to command_key.pem.
« user_configuration.json — configuration file used in write config. May be edited.

When running the commander security unlock command, Simplicity Commander will use all available files to attempt to unlock the
debug access. If anything is missing, you will be asked to provide the file as an option to the command. The file will then be stored in
Security Store, unless the --nostore option is used.

5.2 Access Certificate

An access certificate is used to delegate access to a single device to another key, which is called a certificate key. This scheme sup-
ports security models where the command key is kept in a secure location, while the certificate key can be used with more lenient se-
curity practices.

The access certificate contains the serial number of the device it applies to, a description of what actions it gives access to, and the
public certificate key. An outline of the access certificate is illustrated in the following figure.

The device serial number uniquely identifies each device. It can be displayed by executing the commander security status com-
mand. The certificate_authorizations.json file sets the authorizations for the certificate. The current version of Simplicity Commander
does not support any modifications to the authorization file, but it will be available in future versions. The private certificate key corre-
sponding to the public certificate key in the certificate is used to generate a signature required to unlock debug access. For more infor-
mation, see 5.3 Challenge and Command Signing. The certificate is authenticated by signing it with the private command key corre-
sponding to the public command key written to the device. The signing of the certificate may be done by passing an unsigned certificate
to a Hardware Security Module (HSM) containing the private key or by providing the private key to Simplicity Commander (that is, for
development) using the --command-key option.

Device Serial Number

Authorization

Certificate Public Key

Access Certificate Signature
Sighed by Command private key

Figure 5.1. Access Certificate

silabs.com | Building a more connected world. Rev. 1.8 | 18

UG162: Simplicity Commander Reference Guide
Security Overview

5.3 Challenge and Command Signing

The part of the data that needs to be signed to create a valid unlock command is called the challenge. Secure Element generates this
random data. It remains unchanged until it is updated to a new random value by the security rollchallenge command.

By updating the challenge, any existing command signatures are effectively invalidated because part of the data the signature encom-
passes has changed. This allows the owner of the device to give debug access to someone else for a limited amount of time.

A command signature is created by signing a binary containing the data fields in yellow in the following figure; Simplicity Commander
sets the unlock command ID, command parameters, and the security challenge using the private key corresponding to the public key in
the access certificate.

The security gencommand command creates a file containing these elements, but does not include the signature. If the certificate pri-
vate key is not available to the user, the signature must be obtained from another party—for example, an HSM. If the user possesses
the certificate private key, Security Commander can create the signed unlock command using the security unlock command. By
passing the command signature and the access certificate to the Debug Challenge interface, the debug interface is temporarily un-
locked until the next power-on or pin reset.

Unlock Command ID

Command parameters

Device challenge

Unlock Command Signhature
Signed by Certificate Private key

Figure 5.2. Unlock Command Signature

silabs.com | Building a more connected world. Rev. 1.8 | 19

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6. Simplicity Commander Commands

This section includes the following information for using each Simplicity Commander command:
» Command Line Syntax

* Command Line Input Example

» Command Line Output Example

In cases where the Command Line Syntax is the same as the Command Line Input Example, only the former is included.

The Simplicity Commander commands are organized in the following categories:
* 6.1 Device Flashing Commands

* 6.2 Flash Verification Command

* 6.3 Memory Read Commands

* 6.4 Token Commands

* 6.5 Convert and Modify File Commands

6.6 EBL Commands

6.7 GBL Commands

6.8 Kit Utility Commands

* 6.9 Device Erase Commands

* 6.10 Device Lock and Protection Commands

» 6.11 Device Utility Commands

* 6.12 External SPI Flash Commands

» 6.13 Advanced Energy Monitor Measure Command
* 6.14 Serial Wire Output Read Commands

* 6.15 NVM3 Commands

* 6.16 CTUNE Commands

* 6.17 Security Commands

* 6.18 Util Commands

6.1 Device Flashing Commands

The commands in this section all require a working debug connection for communicating with the device. You would normally always
use one of the J-Link connection options when running the flash command, but it is intentionally left out of most of the examples to
keep them short and concise.

silabs.com | Building a more connected world. Rev. 1.8 | 20

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.1 Flash Image File

Flashes the image in the specified filename to the target device, starting at the specified address. The affected bytes will be erased
before writing. If the image contains any partial flash pages, these pages will be read from the device and patched with the image con-
tents before erasing the page and writing back. After writing, the affected flash areas are read back and compared. Finally, the chip is
reset using a pin reset, making code execution start. The debugger to connect to is indicated by the J-Link serial number (--serialno
option).

Command Line Syntax

$ commander flash <filename> --address <address> --serialno <serial number>

Command Line Input Example

$ commander flash blink.bin --address 0x0 --serialno 440012345

Connects to the J-Link debugger with serial number 440012345 and flashes the image in blink.bin to the target device, starting at ad-
dress 0.

Command Line Output Example

Flashing blink.s37.

Flashing 2812 bytes, starting at address 0x00000000
Resetting. - -

Uploading flash loader...

Waiting for flashloader to become ready.- ..
Erasing flash...

Flashing. ..

Verifying written data...

Resetting. - -

Finished!

DONE

6.1.2 Flash Using IP Address without Verification and Reset

Flashes the image in the specified filename to the target device, using the IP address specified. The data in flash is not verified after
flashing, and the device is left halted after flashing.

Command Line Syntax

$ commander flash <filename> --ip <IP> --halt --noverify>

Command Line Input Example

$ commander flash blink.s37 --ip 10.7.1.27 --halt --noverify

Flashes the image in blink.s37 to the target device, using the IP address 10.7.1.27. The data in flash is not verified after flashing, and
the device is left halted after flashing.

Command Line Output Example

Flashing blink.s37.

Flashing 2812 bytes, starting at address 0x00000000
Resetting. ..

Uploading flash loader...

Waiting for flashloader to become ready...

Erasing flash...

Flashing...

Finished!

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 21

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.3 Flash Several Files

Flashes the images to the target device. Any overlapping data is considered an error.

Command Line Syntax

$ commander flash <filename> <filename>

Command Line Input Example

$ commander flash blink.s37 userpage.hex

Flashes the images in blink.s37 and userpage.hex to the target device.

Command Line Output Example

Adding file blink.s37...

Adding file userpage.hex...

Flashing 2812 bytes, starting at address 0x00000000
Resetting. - .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. - .

Verifying written data...

Finished!

Flashing 2048 bytes, starting at address 0x0fe00000
Resetting. - .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. - .

Verifying written data...

Resetting. - .

Finished!

DONE

silabs.com | Building a more connected world.

Rev.1.8 | 22

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.4 Patch Flash

Writes the specified byte(s) to the flash. The affected pages will be read from the device and patched with this data before erasing the
page and writing back. When you use the —patch option, the patch memory data is interpreted as an unsigned integer. The optional
length argument can be used to define the number of bytes, up to 8 bytes. If no length is specified, the default is to patch 1 byte.

Command Line Syntax

$ commander flash -—patch <address>:<data>[:length]

Command Line Input Example

$ commander flash --patch 0x120:0xAB --patch 0x3200:0xA5A5:2

Writes the specified bytes 0xAB to address 0x120 and 0xA5A5 to address 0x3200. The affected pages will be read from the device and
patched with this data before erasing the page and writing back.

Command Line Output Example

Patching 0x00000120 = OxAB. ..

Patching 0x00003200 = OxAS5A5. ..

Flashing 2048 bytes, starting at address 0x00000000
Resetting. - .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. ..

Verifying written data...

Finished!

Flashing 2048 bytes, starting at address 0x00003000
Resetting. . .

Uploading flash loader...

Waiting for flashloader to become ready. ..

Erasing flash. ..

Flashing. ..

Verifying written data...

Resetting. - .

Finished!

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 23

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.5 Patch Using Input File

Flashes the specified application while simultaneously patching the image file and the flash of the device. If a flename is inside the file,
these bytes are patched before writing the image

Command Line Syntax

$ commander flash <filename> —-patch <address>:<data>[:length] —patch <address>:<data>[:length]

Command Line Input Example

$ commander flash blink.s37 --patch 0x123:0x00FF0001:4 --patch OxOFE00004:0x00

Flashes the blink application while simultaneously patching the image file and the flash of the device. Because 0x123 is inside the file,
these bytes are patched before writing the image. Additionally, the user page will be read from the device and patched with this data
before erasing the page and writing back.

Command Line Output Example

Flashing blink.s37.

Patching 0x00000123 = OOFFO0O01...

Patching OxXOFE00004 = 00...

Flashing 4096 bytes, starting at address 0x00000000
Resetting. - -

Uploading flash loader...

Waiting for flashloader to become ready.- ..

Erasing flash...

Flashing. . .

Verifying written data...

Finished!

Flashing 2048 bytes, starting at address 0x0fe00000
Resetting. - -

Uploading flash loader...

Waiting for flashloader to become ready.- ..

Erasing flash...

Flashing. . .

Verifying written data...

Finished!

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 24

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.1.6 Flash Tokens

This section describes how to flash one or more tokens from text file(s) and/or command line options with their new values. Manufactur-
ing tokens are the only token type supported by Simplicity Commander; simulated EEPROM tokens are not supported. For more infor-
mation on manufacturing tokens, see AN961: Bringing Up Custom Nodes for the EFR32MG and EFR32FG Families.

The --tokengroup option defines which group of tokens is used. Simplicity Commander currently has built-in support for the znet
token group.

Silicon Labs recommends generating a token file from a device or image file using the tokendump command and then making modifica-
tions to this file for use with the --tokenfile option.

Command Line Syntax

$ commander flash --tokengroup <token group> -—token <TOKEN_NAME:value> —-tokenfile <filename>

Command Line Input Example

$ commander flash --tokengroup znet --token TOKEN_MFG_STRING:"l1oT Inc"

Set the token MFG_STRING to have the value 10T Inc. The TOKEN_ prefix is optional, that is, TOKEN_MFG_STRING and MFG_STRING are
equivalent.

Command Line Input Example

$ commander flash --tokengroup znet --tokenfile tokens.txt

Sets the tokens specified in tokens.txt. All tokens in the file are processed, and if a duplicate is found, it will be treated as an error.

Command Line Input Example

$ commander flash --tokengroup znet --tokenfile tokens.txt --token TOKEN_MFG_STRING:1oT Inc”

Sets the tokens specified in tokens.txt. Additionally, sets the MFG_STRING to the value given. All files and tokens specified on the com-
mand line are processed, and if a duplicate is found, it will be treated as an error.

Depending on the operating system and shell being used, some escapes may be needed to correctly specify a string. For example, on
the command line in a Windows 7 Professional Command Prompt window, execute the following command:

$ commander flash --tokengroup znet --token "TOKEN_MFG_STRING:\"10oT Inc\""

Command Line Output Example

Flashing 2048 bytes to 0x0fe00000
Resetting. - -

Uploading flash loader...

Waiting for flashloader to become ready.- ..
Erasing flash...

Flashing. . .

Verifying written data...

Resetting. - -

Finished!

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 25

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.2 Flash Verification Command

The verify command verifies the contents of a device against a set of files, tokens, and/or patch options without writing anything to the
flash. It works just like the verification step of the flash command, but without actually flashing first. For example, the verify command
can be used to verify that the application on a microcontroller is what you expect it to be.

Command Line Syntax
All options and examples for the flash command also apply to the verify command. The exceptions are the --halt, --masserase,

and --noverify options that do not apply to the verify command.

$ commander verify [filename] [filename ...] [patch options] [token options]

Command Line Input Example

$ commander verify myimage.hex

Command Line Output Example

Parsing file myimage.hex. ..

Verifying 52000 bytes at address 0x00000000. . .0K!
Verifying 2048 bytes at address 0x0fe00000...0K!
DONE

6.3 Memory Read Commands

The readmem command reads data from a device and can either store it to file or print it in human-readable format. The location and
length to be read from the device is defined by the --range and --region options. You can combine one or more ranges and regions
to read and combine several different areas in flash to one file.

Note: Like flash, the commands in this section all require a working debug connection for communicating with the device. One would
normally always use one of the J-Link connection options when running readmem, but this is left out of the examples to keep them short
and concise.

The --range option supports two different range formats:

* The first is <startaddress>:<endaddress>, for example, --range 0x4000:0x6000. The range is non-inclusive, meaning that all
bytes from 0x4000 up to and including Ox5FFF are read out.

» The second is <startaddress>:+<length>, which takes an address to start reading from, and a number of bytes to read. For ex-
ample, the equivalent command line input to the previous example is --range 0x4000 :+0x2000.

The --region option takes a named flash region with an @ prefix. Valid regions for use with the --region option are listed below.
EFM32, EZR32, EFR32: @mainflash, @userdata, @lockbits, @devinfo

EM3xx: @mfb, @cib, @Fib

silabs.com | Building a more connected world. Rev. 1.8 | 26

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.3.1 Print Flash Contents
Specifies the range of memory to read from flash and prints data.

Command Line Syntax

$ commander readmem —-range <startaddress>:<endaddress>

OR

Command Line Syntax

$ commander readmem —-range <startaddress>:+<length>

Command Line Input Example

$ commander readmem --range 0x100:+128

Reads 128 bytes from flash starting at address 0x100 and prints it to standard out.

Command Line Output Example

Reading 128 bytes from 0x00000100. ..

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
00000100: 12 FO 40 72 11 00 DF F8 CO 24 90 42 07 D2 DF F8
00000110: BC 24 90 42 03 D3 5F FO 80 72 11 00 01 EO 00 22
00000120: 11 00 DF F8 84 26 12 68 32 FO 40 72 OA 43 DF F8
00000130: 78 36 1A 60 70 47 80 B5 00 FO 90 FC FF F7 DD FF
00000140: 01 BD DF F8 70 16 09 68 08 00 70 47 38 B5 DF F8
00000150: 4C 06 00 FO 9F F9 05 OO0 ED B2 28 00 07 28 05 DO
00000160: 08 28 07 D1 00 FO 7C FC 04 00 OB EO FF F7 E9 FF
00000170: 04 00 O7 EO 40 F2 25 11 DF F8 3C 06 00 FO BO FC
DONE

6.3.2 Dump Flash Contents to File

Reads the contents of the specified user page and stores it in the specified filename. File format will be auto-detected based on file
extension (.bin, .hex, or .s37). (See 2. File Format Overview for more information on file formats.)

Command Line Syntax
$ commander readmem —-region <@region> --outfile <filename>

Command Line Input Example

$ commander readmem --region @userdata --outfile userpage.hex

Reads the contents of the region named userdata and stores it in an output file named userpage.hex.

Command Line Output Example

Reading 2048 bytes from 0x0fe00000. ..
Writing to userpage.hex...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 27

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.4 Token Commands

The tokendump command generates a text dump of token data. It can take as input either a (set of) files using the same command line
options as the convert command, or a microcontroller using the same command line options as the readmem command.

The output of tokendump can either be printed to standard output or written to an output file using the --outfile option. The file written
when using the --outfile option is suitable for modification and re-use as input to the flash, verify, or convert commands using
the --tokenfi le option.

tokendump always requires a token group to be selected with the —-tokengroup option. A token group is a defined set of tokens for a
specific stack or application. Simplicity Commander only supports the znet token group.

Manufacturing tokens are the only token type supported by Simplicity Commander; simulated EEPROM tokens are not supported. For
more information on manufacturing tokens, see AN961: Bringing Up Custom Nodes for the EFR32MG and EFR32FG Families.
6.4.1 Print Tokens

Command Line Syntax

$ commander tokendump --tokengroup <token group> [--token <token name>]

Command Line Input Example

$ commander tokendump --tokengroup znet --token TOKEN_MFG_STRING --token TOKEN_MFG_EMBER_EUl_64

Reads the selected tokens from the device and prints it to stdout.

Command Line Output Example

#

The token data can be in one of three main forms: byte-array, integer, or string.
Byte-arrays are a series of hexadecimal numbers of the required length.

Integers are BIG endian hexadecimal numbers.

String data is a quoted set of ASCII characters.

#

MFG_STRING : "loT_Inc"

MFG_EMBER_EUI_64: FOB2030000570B00
DONE

6.4.2 Dump Tokens to File

This example works just like section 6.4.1 Print Tokens, except that the output is written to a file suitable for use with the --tokenfile
option (fFlash, verify, and convert commands).

Command Line Syntax
$ commander tokendump --tokengroup <token group> [--token <token name>] --outfile <filename>

Command Line Input Example

$ commander tokendump --tokengroup znet --outfile tokens.txt
Reads all tokens from the device and outputs it to the file named tokens.txt.

Command Line Output Example

Writing tokens to tokens.txt...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 28

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.4.3 Dump Tokens from Image File
If an input file is given to the tokendump command, the input is read from one or more files instead of reading from a device.
In this case, the --device option must be provided, because token locations can be different from one device family to another.

Command Line Syntax

$ commander tokendump <filename> --tokengroup <token group> --device <device> [--outfile <filename>]

Command Line Input Example

$ commander tokendump blink.hex --tokengroup znet --device EFR32MG1P --outfile tokens.txt

Command Line Output Example

Parsing file blink.hex. ..
DONE

6.4.4 Generate C Header Files from Token Groups

The tokenheader command generates a simple header file based on a custom token group. The generated header file contains pre-
processor defines that specify the location and size of each token.

See section 4. EFR32 Custom Tokens for details on custom tokens.

Command Line Syntax

$ commander tokenheader --tokengroup <group name> --device <target device> <filename>

Command Line Input Example

$ commander tokenheader --tokengroup myapp --device EFR32MG1P233F256 my_tokens.h

Command Line Output Example

Writing token header file: my_tokens.h
DONE

6.5 Convert and Modify File Commands

The convert command performs image file conversion and manipulation. It supports the following actions:
» Conversion between file formats

* Merging several image files

» Extracting subsets of images

« Patching bytes

» Setting token data

The convert command can either write its output to a file or print it to standard out in human-readable format, similar to the readmem
command. When writing to a file, the file format is auto-detected based on the file extension used.

The convert command works off-line without any J-Link/debug connection. The command is device-agnostic, except when working
with tokens or ebl files. In this case, you must use the --device option.

Command Line Syntax

$ commander convert [infilel] [infile2 ..] [options]

silabs.com | Building a more connected world. Rev. 1.8 | 29

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.1 Combine Two Files
Converts two files with different file formats into one specified output file.

Command Line Syntax

$ commander convert <filename> <filename> [--address <address>] --outfile <filename>

Command Line Input Example

$ commander convert blink.bin userpage.hex --address 0x0O --outfile blinkapp.s37

Combines blink.bin and userpage.hex to blinkapp.s37. The address option is used to set the start address of the .bin file, since bin files
doesn’t contain any addressing information. If more than one .bin file is supplied, the same start address is used for all. If this is not
desirable, consider converting the bin files to s37 or hex in a separate preparation step.

Command Line Output Example

Parsing file blink.bin...
Parsing file userpage-hex. ..
Writing to blinkapp.s37...
DONE

6.5.2 Define Specific Bytes

Like the flash command, the convert command supports the --patch option for setting arbitrary unsigned integers at any address.

Command Line Syntax

$ commander convert [filename] --patch <address>:<data>[:length] [--outfile <filename>]

Command Line Input Example

$ commander convert blink.s37 --patch OxXOFEO0000:0x12345:4 --outfile blink.hex

Converts blink.s37 to hex format, while simultaneously defining the first four bytes of the user page to 0x00012345. This works just like
flash blink.s37 --patch OxOFE00000:0x12345:4, but works against a file instead of writing to a device flash.

Command Line Output Example

Parsing file blink.s37...

Patching OxOFEOOOOO = 0x00012345...
Writing to blink.hex...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 30

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.3 Define Tokens

Like the flash command, the convert command supports the --tokengroup, --token and --tokenfi le options for setting token data
while doing file conversion.

Command Line Syntax

$ commander convert [filename] --tokengroup <token group> [--tokenfile <filename>]
[--token <token name>

:<token data>] [--device <device>] [--outfile <filename>]

Command Line Input Example

$ commander convert blink.s37 --tokengroup znet --tokenfile tokens.txt --device EFR32MG1P --outfile blink.hex

Converts blink.s37 to hex format, while simultaneously defining the tokens defined in tokens.txt and on the command line. Works just
like the corresponding options with flash, but writes to file instead of flash.

Command Line Output Example

Parsing file blink.s37...
Writing to blink_hex...
DONE

6.5.4 Dump File Contents

Like the readmem command, the convert command will print its output in human-readable format to standard out if no output file is
given.

Command Line Syntax

$ commander convert <filename> [--address <bin file start address>]

Command Line Input Example

$ commander convert blink.bin --address 0x0 userpage.hex

If the —-outFile option is not used, the data is printed to stdout instead of writing to file.

Command Line Output Example

Parsing file blink.bin...

Parsing file userpage.-hex. ..

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
00000000: 10 04 00 20 B5 OA 00 00 57 08 00 00 8B OA 00 00
00000010: 00 00 00 00O OO0 00 00O OO OO OO 00 00 OO OO 00O 00
00000020: 00 00 00 00 OO0 00 00 OO 00 OO 00 00 97 OA 00 00
00000030: 00 00 00 00 00 00 00 00 D1 OA 00 00 13 06 00 00
00000040: D3 OA 00 00 D5 OA 00 00 D7 OA 00 00 D9 OA 00 00
00000050: DB OA 00 00 DD OA 00 00 DF OA 00 00 E1 OA 00 00
00000060: E3 OA 00 00 E5 OA 00 00 E7 OA 00 00 E9 OA 00 00
00000070: EB OA 00 00 ED OA 00 00 EF OA 00 00 F1 OA 00 00
<shortened data for documentation>

00000ac0: C5 OA 00 00 CO 46 CO 46 CO 46 CO 46 FF F7 CA FF
00000ad0: FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7
00000ae0: FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7 FE E7
00000af0: FE E7 FE E7 00 36 6E 01 00 80 00 00

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
0fe00000: 45 23 01 00 FF FF FF FF FF FF FF FF FF FF FF FF
0fe00010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0fe00020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
<shortened data for documentation>

0fe007e0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0fe007f0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 31

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.5 Signing an Application for Secure Boot

Signs an application for use with a Secure Boot bootloader. For more information, see UG266: Silicon Labs Gecko Bootloader User's
Guide.

Command Line Syntax

$ commander convert <image file> --secureboot --keyfile <signing key> --outfile <signed image file>

Command Line Input Example

$ commander convert nodetest.s37 --secureboot --keyfile mykey --outfile nodetest-signed.s37

This example signs the image file named nodetest.s37.

Command Line Output Example

Parsing file nodetest.s37...

Image SHA256: 4591da45b6c40a424b81753001708061d5319197adec5188fF4acc512cfth88e65
R = 8E417EB4CBC584218A8605FCF3E778F2A7810F2CAE190CB2EF4D0ODF842829CC1

S = 5B095025FFD571699725107C4666C0B8B867370E990B73E74A0502CB9788DCA8

Writing to nodetest-signed.s37...

DONE

6.5.6 Signing an Application for Secure Boot using a Hardware Security Module

Prepares an application for signing for use with a Secure Boot enabled bootloader using a Hardware Security Module (HSM). For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide.

Command Line Syntax

$ commander convert <image file> --secureboot --extsign --outfile <image file for external signing>

Command Line Input Example

$ commander convert nodetest.s37 --secureboot --extsign --outfile nodetest.s37.extsign

This example creates an output in the form that an HSM can create a signature over of the entire file. This signature can again be
written to the file using the command described in 6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a
Hardware Security Module.

Command Line Output Example

Parsing file nodetest.s37...
Writing to nodetest.s37.extsign...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 32

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a Hardware Security Module

Signs an application for use with a Secure Boot bootloader using a signature created by a Hardware Security Module (HSM). For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide.

Command Line Syntax

$ commander convert <image file> --secureboot --signature <signature from external signing> --outfile <signed image file>

Command Line Input Example

$ commander convert nodetest.s37 --secureboot --signature nodetest.s37.extsign.sig --outfile nodetest-signed.s37

This example signs the image file nodetest.s37 using a signature obtained from an HSM using the .extsign file generated in 6.5.6 Sign-
ing an Application for Secure Boot using a Hardware Security Module. The input file (nodetest.s37) used with this function must be the
same file as was used when generating the .extsign file in 6.5.6 Signing an Application for Secure Boot using a Hardware Security
Module.

Command Line Output Example

Parsing file nodetest.s37...

Parsing signature file nodetest.s37.extsign.sig. ..

R = 8E417EB4CBC584218A8605FCF3E778F2A7810F2CAE190CB2EF4D0ODF842829CC1
S = 5B095025FFD571699725107C4666C0B8B867370E990B73E74A0502CB9788DCA8
Writing to nodetest-signed.s37...

Overwriting file: nodetest-signed.s37...

DONE

6.5.8 Adding a CRC32 for Gecko Bootloader

This option adds a CRC32 (32-bit cyclic redundancy check) of the image that the Gecko Bootloader can use to ensure image integrity
when Secure Boot is not used. This feature requires that an ApplicationProperties_t struct is present in the image. For more details
on the ApplicationProperties_t struct, see UG266: Silicon Labs Gecko Bootloader User’s Guide.

Command Line Syntax

$ commander convert <image file> --crc --outfile <image file with CRC>

Command Line Input Example

$ commander convert nodetest.s37 --crc --outfile nodetest-crc.s37

This example adds a checksum to the image file named nodetest.s37.

Command Line Output Example

Parsing file nodetest.s37...
Appending CRC32 checksum. ..
Writing to nodetest-crc.s37...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 33

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.5.9 Signing an Application for Secure Boot using an Intermediary Certificate

Signs an application for use with a Secure Boot bootloader using an intermediary certificate. When using an intermediary certificate, the
ApplicationProperties_t struct must bepresent in the image. For more information on the ApplicationProperties_t struct, see
UG266: Silicon Labs Gecko Bootloader User's Guide.

Secure Boot verification via an intermediary certificate is only supported on Series 2 EFR32 devices. Secure Boot must be enabled
before signing a bootloader with an intermediary certificate. For more information about enabling Secure Boot, see 6.17.16 Write User
Configuration.

There are two ways of signing the application:
» Providing the private keyfile corresponding to the public key embedded in the certificate directly.
» Preparing an application for signing with a Hardware Security Module (HSM) by generating an output in the form that an HSM can

create a signature over the entire file. The signature can then be written to the file by passing it to Simplicity Commander as descri-
bed below.

Note: Simplicity Commander does currently not support the generation of certificates for Secure Boot signing. This will be available in a
future version of Simplicity Commander.

Command Line Syntax

$ commander convert <image file> --secureboot --certificate <certificate file> --keyfile <keyfile> --outfile <signed image
file>

$ commander convert <image file> --secureboot --certificate <certificate file> --extsign --outfile <image file
for external signing>

$ commander convert <image file> --secureboot --certificate <certificate file> --signature <signature> --
outfile <signed image file>

Command Line Input Example

$ commander convert nodetest.s37 --secureboot --certificate nodetest_certificate.bin --keyfile public_certificate_key.pem
--outfile nodetest-signed.s37

This example signs the image file nodetest.s37 using an intermediary certificate. The keyfile used to sign the application corresponds to
the public key embedded in the certificate. Simplicity Commander always validates the key before signing the application.

Command Line Output Example

Parsing file nodetest.s37...

Private key matches public key in certificate.

R = 137EA7A19F6100E1EFA5C185CA952B67137D0597F4A89C7543BC5A49A7A6681E
S = C537A833018C3A23CF1EBDBAB04559482B0B5333A7C21556E6B42EDA1D1A5102
Writing to nodetest-signed.s37...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 34

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.6 EBL Commands

6.6.1 Print EBL Information

Parses and prints EBL information from the specified .ebl file.
Command Line Syntax

$ commander ebl print <filename>

Command Line Input Example

$ commander ebl print nodetest.ebl

Command Line Output Example

Found EBL Tag = 0x0000, length 140, [EBL Header]
Version: 0x0201
Signature: OXE350 (Correct)
Flash Addr: 0x00004000

AAT CRC: Ox53BC1F4E
AAT Size: 128 bytes
HalAppBaseAddressTableType
Top of Stack: 0x20006980
Reset Vector: 0x000121F9
Hard Fault Handler: 0x00012125
Type: Ox0AA7
HalVectorTable: 0x00004100
Full AAT Size: 172
Ember Version: 5.7.0.0
Ember Build: 0
Timestamp: Ox561E581F (Wed Oct 14, 2015 13:26:55 UTC [+0100])
Image Info String:"*
Image CRC: O0x2ACEOC5B
Customer Version: 0x00000000
Image Stamp: OxF4271F50BA2E2FBA

Found EBL Tag = OxFDO3, length 1924, [Erase then Program Data]
Flash Addr: 0x00004080

Found EBL Tag = OxFDO3, length 2052, [Erase then Program Data]
Flash Addr: 0x00004800

(32 additional tags of the same type and length.)

Found EBL Tag = OxFDO3, length 1772, [Erase then Program Data]
Flash Addr: 0x00015000

Found EBL Tag = OxFCO04, length 4, [EBL End Tag]
CRC: OxDBC82DA5

The CRC of this EBL file is valid (Oxdebb20e3)

File has 0 bytes of end padding.-

Calculated image stamp matches value found in AAT.

DONE

6.6.2 EBL Key Generation

Generates a keyfile to be used for encryption or decryption and outputs the keyfile to the specified filename.
Command Line Syntax

$ commander ebl keygen --type aes-ccm --outfile <filename>

Command Line Input Example
$ commander ebl keygen --type aes-ccm --outfile key.txt
Command Line Output Example

Using /dev/random for random number generation
Gathering sufficient entropy... (may take up to a minute)...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 35

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.6.3 EBL File Creation

Creates an EBL file from an application image and writes the output to the specified filename. Can optionally encrypt the EBL file using
a keyfile generated by the ebl keygen command.

Command Line Syntax

$ commander ebl create <eblfile> --app <filename> --device <part number> [--encrypt <keyfile>]
Command Line Input Example

$ commander ebl create app-ebl.encrypted --app nodetest.s37 --device EFR32F256 --encrypt key.txt

Command Line Output Example

Parsing file nodetest.s37...
Parse .s37 format for flash
Flash Usage:

Reserved for Bootloader: 0x00000000-0x00003FfFF (16384 bytes)
CODE and Tables: 0x00004000-0x00014ddb (69084 bytes)
CONST and INITC: 0x00014ddc-0x000184ab (14032 bytes)
Available for future use: 0x000184ac-0x0003dfff (154452 bytes)
Reserved for SIMEE: 0x0003e000-0x0003fFfFfF (8192 bytes)

Usage Summary:
262144 total bytes Flash, 107692 used, 154452 available

Setting AAT timestamp to current time: 0x586elec9
Create ebl image file

Wrote image stamp into AAT.

Encrypting EBL...

Unencrypted input file: ebl_plaintext_ux8544_ebl
Encrypt output file: app-ebl._encrypted
Randomly generating nonce

Using /dev/random for random number generation

Gathering sufficient entropy... (may take up to a minute)...
Created ENCRYPTED ebl image file
DONE

6.6.4 EBL File Parsing

Parses an EBL file and writes the application image to the specified filename. Optionally decrypts an encrypted EBL file. The keyfile
must be the same as was used for encrypting the encrypted EBL file.

Command Line Syntax

$ commander ebl parse <ebl filename> --app < filename> --device <part number> [--decrypt <key filename>]

Command Line Input Example

$ commander ebl parse nodetest.ebl.encrypted --app app.s37 --device EFR32F256 --decrypt ../aeskey

Command Line Output Example

Unencrypted output file: ebl_plaintext L10567.ebl
Encrypt input file: nodetest.ebl .encrypted
MAC matches. Decryption successful.

Created DECRYPTED ebl image file

Parse .ebl format for flash

Create image file

Writing application to app-s37...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 36

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.6.5 Memory Usage Information from AAT

For applications containing an Application Address Table (AAT), Simplicity Commander can analyze the memory usage of the applica-
tion. The AAT is included in Zigbee applications.

RAM usage is only available for EM3xx applications. Applications built for EFR32 can only be analyzed for flash usage.
Command Line Syntax
$ commander ebl aat-usageinfo <filename> --device <part number>

Command Line Input Example

$ commander ebl aat-usageinfo nodetest.s37 --device EM357

Command Line Output Example

Parse .s37 format for flash

Approximate Usage Information:

RAM Usage:
APPLICATION_CONFIGURATION_HEADER usage: 0x20000000-0x20000fc3 (4036 bytes)
Available for future use: 0x20000fc4-0x2000195F (2460 bytes)
Call Stack: 0x20001960-0x200022bf (2400 bytes)
Globals and Statics: 0x200022c0-0x20002fe8 (3369 bytes)
Alignment Overhead: 0x20002fe9-0x20002fef (7 bytes)
NO_INIT and Debug Channel: 0x20002FF0-0x20002FFfF (16 bytes)

Flash Usage:
Reserved for Bootloader: 0x08000000-0x08001FFF (8192 bytes)
CODE and Tables: 0x08002000-0x08011cdf (64736 bytes)
CONST and INITC: 0x08011ce0-0x08014263 (9604 bytes)
Available for future use: 0x08014264-0x0802dfff (105884 bytes)
Reserved for SIMEE: 0x0802e000-0x0802FFfFf (8192 bytes)

Usage Summary:
12288 total bytes RAM, 9828 used, 2460 available
196608 total bytes Flash, 90724 used, 105884 available

DONE

6.7 GBL Commands

6.7.1 GBL File Creation

Creates a Gecko Bootloader (GBL) file from an application image and writes the output to the specified filename. Can optionally encrypt
the GBL file using a keyfile generated by the gbl keygen command.

Command Line Syntax

$ commander gbl create <gblfile> --app <filename> [--encrypt <keyfile>]

Command Line Input Example

$ commander gbl create app-gbl.encrypted --app nodetest.s37 --encrypt key.txt

Command Line Output Example

Parsing file nodetest.s37...
Initializing GBL file...

Adding application to GBL...
Encrypting GBL...

Writing GBL file app.gbl.encrypted...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 37

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.2 GBL File Creation with Compression

Creates a compressed Gecko Bootloader (GBL) file from an application image and writes the output to the specified filename. Can op-
tionally encrypt the GBL file using a keyfile generated by the gbl keygen command.

The currently supported compression algorithms are 1z4 and 1zma. The bootloader on the targeted devices must support decompress-
ing the selected compression type.

Command Line Syntax

$ commander gbl create <gblfile> --app <filename> --compress <compression algorithm> [--encrypt <keyfile>]

Command Line Input Example

$ commander gbl create app.gbl --app nodetest.s37 --compress 1z4

Command Line Output Example

Parsing file nodetest.s37...
Initializing GBL file...
Adding application to GBL...
Compressing using 1z4. ..
Writing GBL file app-gbl...
DONE

6.7.3 Creating a GBL File for Bootloader Upgrade

Creates a GBL file from a bootloader image and writes the output to the specified bootloader image filename. For more information, see
UG266: Silicon Labs Gecko Bootloader User's Guide.

Command Line Syntax
$ commander gbl create <gblfile> --bootloader <bootloader image file> [--encrypt <keyfile>]

Command Line Input Example

$ commander gbl create bootloader.gbl --bootloader bootloader.s37

Command Line Output Example

Initializing GBL file...

Adding bootloader to GBL...
Writing GBL file bootloader.gbl...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 38

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.4 Creating a GBL File for Secure Element Upgrade

The Secure Element on EFR32xG21 devices can be upgraded using a Secure Element upgrade binary provided by Silicon Labs. This
command creates a GBL file containing a Secure Element upgrade file and writes the output to the specified GBL filename. For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide.

Command Line Syntax

$ commander gbl create <gblfile> --seupgrade <secure element upgrade file> --app <application image>

Command Line Input Example

$ commander gbl create se-upgrade.gbl --seupgrade secure-element-1.0.0.seu --app myapp-.s37

Command Line Output Example

Parsing file myapp.s37...

Initializing GBL file...

Adding application to GBL...

Adding Secure Element upgrade image to GBL...
Writing GBL file se-upgrade.gbl...

DONE

6.7.5 Creating a Signed and Encrypted GBL Upgrade Image File from an Application

Creates a GBL file, signs the GBL file, and encrypts the GBL file. For more information, see UG266: Silicon Labs Gecko Bootloader
User's Guide.

Command Line Syntax

$ commander gbl create <gblfile> --app <app image file> --sign <signing key> [--encrypt <encryption key>]

Command Line Input Example

$ commander gbl create nodetest.gbl --app nodetest.s37 --sign ecdsakey --encrypt aeskey

Command Line Output Example

Parsing file nodetest.s37...

Initializing GBL file...

Adding application to GBL...

Encrypting GBL. ..

Signing GBL...

Image SHA256: 74b126bdbad680470487e32d7d7b3ec7f12b15d9988e028b26c2dd54f81dcfb7
R = 055A23A44CDEDA34506EE72F4530FE174CFC85F48933C1379C1360F8BC1AA75B

S = 1C9EF6C3F5CAAOD5B92ECC2569E4A8251F8561DAF52DES54D3E59591A5001B9EA

Writing GBL file nodetest.gbl...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 39

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Security Module

It is often not desirable to keep the private key used for signing locally on the computer that creates the GBL images. A good way to
increase security is to use a Hardware Security Module (HSM) to generate the actual signatures. Simplicity Commander supports using
a three-step process:

1. Create a partial GBL file for external signing using Simplicity Commander.
2. Create an Elliptic Curve Digital Signature Algorithm (ECDSA) signature of the partial GBL file using an HSM.
3. Use Simplicity Commander to sign the partial GBL file using the signature from the HSM, and create a complete GBL file.

Step 1 is described in this section. Step 2 is specific to the HSM you are using. Step 3 is described in 6.7.7 Creating a Signed GBL File
Using a Hardware Security Module. For more information, see UG266: Silicon Labs Gecko Bootloader User's Guide.

Command Line Syntax

$ commander gbl create <output partial GBL file for external signing> --app <app image file>
--extsign [--encrypt <encryption key>]

Command Line Input Example

$ commander gbl create nodetest.gbl.extsign --app nodetest.s37 --extsign --encrypt aeskey

Command Line Output Example

Parsing file nodetest.s37...
Initializing GBL file...

Adding application to GBL...

Encrypting GBL...

Preparing GBL for external signing...
Writing GBL file nodetest.gbl._extsign...
DONE

6.7.7 Creating a Signed GBL File Using a Hardware Security Module

Creates a signed GBL file from a partial GBL file and an ECDSA signature file in Distinguished Encoding Rules (DER) format generated
as described in 6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Security Module . For more
information, see UG266: Silicon Labs Gecko Bootloader User's Guide.

Silicon Labs recommends that you use the --verify option with the public key corresponding to the private key used by the HSM to
ensure the integrity of the generated GBL file.

Command Line Syntax

$ commander gbl sign <partial GBL file for external signing> --signature <signature from HSM>
[--verify <public key file>] --outfile <signed GBL file>

Command Line Input Example

$ commander gbl sign nodetest.gbl.extsign --signature nodetest.gbl.extsign.sig --verify ecdsakey.pub
--outfile nodetest-signed.gbl

Command Line Output Example

Reading GBL data from nodetest.gbl._extsign...

Parsing signature file nodetest.gbl.extsign.sig...

R = 2E73426A1052E12BFFFEFBA9BE2AAS0CEA815B630C3CA878494EEF26088A5673
S = C218596DB9958AB30924B516953D2E5107644963B4CA128072AC965BE5C2992D
Writing signature to GBL...

Verifying GBL...

Image SHA256: 4d7325b09adeOea272eb9895096c8137b18451F694adeca9a5782f5c08deal3a
Q_X: 60BA97B850291456217C2149061AA344B32BBFB69A91A94BBF2F274744308D39
Q_Y: 41927DA5DB171E1C723C6B59C2BC88EDFF5A37014B0473775BA5B15921686ECA
R = 2E73426A1052E12BFFFEFBA9BE2AAS0CEA815B630C3CA878494EEF26088A5673
S = C218596DB9958AB30924B516953D2E5107644963B4CA128072AC965BE5C2992D
Writing GBL file nodetest-signed.gbl...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 40

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.8 GBL File Parsing

Parses a Gecko Bootloader (GBL) file and writes the application image to the specified filename. Optionally decrypts an encrypted GBL
file. The keyfile must be the same as was used for encrypting the encrypted GBL file.

Command Line Syntax

$ commander gbl parse <gbl filename> --app < filename> [--decrypt <key filename>]

Command Line Input Example

$ commander gbl parse nodetest.gbl.encrypted --app app-s37 --decrypt key.txt

Command Line Output Example

Reading GBL data...

Decrypting GBL...

Reading application...

Writing application to app-s37...
DONE

6.7.9 GBL Key Generation
Generates a keyfile to be used for encryption or decryption and outputs the keyfile to the specified filename.

Command Line Syntax

$ commander gbl keygen --type aes-ccm --outfile <filename>

Command Line Input Example

$ commander gbl keygen --type aes-ccm --outfile key.txt

Command Line Output Example

Using /dev/random for random number generation
Gathering sufficient entropy... (may take up to a minute)...
DONE

6.7.10 Generating a Signing Key

Creates an EDCSA-P256 key pair and outputs the result to the specified key file. For more information, see UG266: Silicon Labs Gecko
Bootloader User's Guide.

Command Line Syntax

$ commander gbl keygen --type ecc-p256 --outfile <signing-key>

Command Line Input Example

$ commander gbl keygen --type ecc-p256 --outfile ecckey

Command Line Output Example

Generating ECC P256 key pair...

Q_X: 79BF593CA56CBCEEBD7E7FB600B6EB7EE33572099220856EE62180BA6A90AB77
Q_Y: ABEBB15823554ECEF5A70ACBOFDC8DEC6C2E7BF091B333EFFC7AFD691462CDE4
D: DEO73A7B41031C1BO7EF720C9583BB865E407733F17F7B43973A794A0A167DBA
Writing EC tokens to ecckey-tokens.txt...

Writing private key file in PEM format to ecckey...

Writing public key file in PEM format to ecckey.pub...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 41

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.7.11 Generate a Signing Key Using a Hardware Security Module

Creates a token text file containing an Elliptic Curve Cryptography (ECC) public key suitable for flashing to a device. For more informa-
tion, see UG266: Silicon Labs Gecko Bootloader User's Guide.

Command Line Syntax

$ commander gbl keyconvert <public key> --outfile <key token text file>

Command Line Input Example

$ commander gbl keyconvert ecckey.pub -0 keytokens.txt

Command Line Output Example

Writing EC tokens to keytokens.txt...
DONE

6.8 Kit Utility Commands

6.8.1 Firmware Upgrade
Updates the application running on the board controller on the kit to a new version provided in an .emz file by Silicon Labs.

Command Line Syntax

$ commander adapter fwupgrade --serialno <J-Link serial number> <filename>

Command Line Input Example

$ commander adapter fwupgrade -s 440050184 S1015B_wireless_stk_firmware_package_ Ov14p0Ob435.emz

Command Line Usage Output

Checking manifest. ..

Checking if target is in bootloader...
Waiting for kit to restart...

Package is usable

Deleting previous firmware...
Installing files...

Resetting target...

Waiting for kit to restart...
Finished!

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 42

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8.2 Kit Information Probe

Retrieves information about a connected kit. Lists information about the kit part number and name, connected boards, and firmware
version.

The options --kit, --boards, and --firmware limit the output to just kit information, board list, or firmware information, respectively.

Command Line Syntax

$ commander adapter probe --serialno <J-Link serial number> [--kit] [--boards] [--Ffirmware]

Command Line Input Example

$ commander adapter probe --serialno 440050184

Command Line Usage Output

Kit Information:

Kit Name : EFR32 Mighty Gecko 2400/915 MHz Dual Band Wireless Starter Kit
Kit Part Number : WSTK6002A Rev. A0O
J-Link Serial : 440050184

Debug Mode : MCU

Firmware Information:

FW Version : 0v14p0b435
Board List:
Name Wireless Starter Kit Mainboard

BRD4001A Rev. AO1

152607557

EFR32MG 2400/915 MHz 19.5 dBm Dual Band Radio Board
BRD4150B Rev. BOO

151300035

Part Number
Serial Number
Name

Part Number
Serial Number
DONE

6.8.3 Adapter Reset Command

This command resets the adapter itself, causing a restart. The adapter reset command is usually not required during normal opera-
tion.

An error about “Communication timed out” may occur because the adapter sometimes restarts before it has time to reply to the com-
mand.

Command Line Syntax

$ commander adapter reset
Command Line Input Example
$ commander adapter reset

Command Line Output Example

Communication timed out: Requested 76 bytes, received 0 bytes !
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 43

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8.4 Adapter Debug Mode Command

This command sets or reads the current debug mode of the adapter. The supported debug modes are typically IN, OUT, MCU, and
OFF. See the quick start guide for your kit for a description of the debug modes it supports.

Command Line Syntax
$ commander adapter dbgmode [mode]

Command Line Input Example

$ commander adapter dbgmode MCU

Command Line Output Example

Setting debug mode to MCU...
DONE
6.8.5 List Adapter IP Configuration Command

The adapter ip command gets or sets the IP configuration of the adapter. With no options, the current configuration is retrieved and
displayed.

Command Line Syntax

$ commander adapter ip

Command Line Input Example

$ commander adapter ip

Command Line Output Example

IP Address: 192.168.0.5/24

Gateway : 192.168.0.1
DNS Server: 192.168.0.1
DONE

6.8.6 Adapter DHCP Command

This command sets up the adapter to use DHCP to automatically retrieve IP, gateway and DNS addresses. This is the default con-
figuration. After enabling DHCP, the adapter must be restarted for the change to take effect.

Command Line Syntax

$ commander adapter ip --dhcp

Command Line Input Example

$ commander adapter ip --dhcp

Command Line Output Example

Enabling DHCP. The adapter must be restarted to acquire a new IP address.
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 44

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.8.7 Set Static IP Configuration Command
This command sets the IP address of the adapter in Classless Inter-Domain (CIDR) notation.

Command Line Syntax

$ commander adapter ip --addr <IP address/prefix> [--gw <gateway address>] [--dns <dns server address>]

Command Line Input Example

$ commander adapter ip --addr 192.168.1.5/24 --gw 192.168.1.1 --dns 192.168.1.1

Command Line Output Example

Setting IP Address: 192.168.1.5/24
Setting gateway: 192.168.1.1
Setting DNS server: 192.168.1.1
DONE

6.9 Device Erase Commands

6.9.1 Erase Chip

Executes a mass erase for devices where it is supported. On EFM32G and EFM32TG, all pages are erased instead, which is signifi-
cantly slower.

Command Line Syntax
$ commander device masserase

Command Line Usage Output

Erasing chip...
DONE

6.9.2 Erase Region

Erases a named region. For more information on the —-region option, see section 6.2 Flash Verification Command.
Command Line Syntax

$ commander device pageerase —region <@region>

Command Line Input Example

$ commander device pageerase --region @userdata

Command Line Output Example

Erasing range 0x0fe00000 - 0x0fe00800
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 45

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.9.3 Erase Pages in Address Range

Erases all flash pages affected by the given memory range. If the given range doesn't match page boundaries, it will be extended to

always erase entire pages.

Command Line Syntax

$ commander device pageerase —range <startaddress>:<endaddress>

Command Line Input Example

$ commander device pageerase —range 0x200:0x6000

Erases all flash pages 0 to 11 or 0x0000 to Ox5FFF (assuming a page size of 2 kB).

Command Line Output Example

Erasing range 0x00000000 - 0x00006000
DONE

6.10 Device Lock and Protection Commands

6.10.1 Debug Lock

Locks access to the debug interface of the device. This feature is only supported on EFM32 and EFR32 devices.

Command Line Syntax

$ commander device lock [—-debug enable]

Command Line Usage Output

Locking debug access...

DONE

6.10.2 Debug Unlock

Unlocks access to the debug interface of the device. This triggers a mass erase if the device was locked before.
This feature is only supported on EFM32 and EFR32 devices.

Command Line Syntax

$ commander device lock —debug disable

Command Line Usage Output

ERROR: Could not get MCU information

Removing all locks/protection...

Unlocking debug access (triggers a mass erase). ..
DONE

In Simplicity Commander version 1.8 an alternative command syntax was introduced.
Command Line Syntax
$ commander device unlock

Command Line Usage Output

Unlocking debug access (triggers a mass erase). ..
Chip successfully unlocked.
DONE

silabs.com | Building a more connected world.

Rev.1.8 | 46

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.10.3 Write Protect Flash Ranges

Protects all flash pages affected by the given memory range from any writes or erases. The available granularity of flash write protec-
tion is device-dependent. Consult the device reference manual for details. For EFM32 and EFR32 devices, for example, the write pro-
tect feature operates on flash pages. On EM3xx devices, this works on 8 kB or 16 kB blocks.

For all devices, if the given range doesn't match the block size supported by the device, it will be extended to always protect entire
regions.

Command Line Syntax
$ commander device protect --write --range <startaddress>:<endaddress>

Command Line Input Example

$ commander device protect --write --range 0x0:0x4000

Protects all flash pages in the first 16 kB from being erased or written to. Useful for protecting a bootloader from being modified by
buggy application code, for example.

Command Line Output Example

Write protecting range 0x00000000 - 0x00004000
DONE

6.10.4 Write Protect Flash Region

Protects all flash pages in the named region from being written to or erased.
Command Line Syntax

$ commander device protect --write --region @<region>

Command Line Input Example

$ commander device protect --write --region @mainflash
Protects the entire main flash from being written to or erased.

Command Line Output Example

Write-protecting all pages in main flash.
DONE

6.10.5 Disable Write Protection
Disables write protection for all pages.

Command Line Syntax

$ commander device protect --write --disable

Command Line Output Example

Disabling all write protection...
DONE

6.11 Device Utility Commands

silabs.com | Building a more connected world. Rev. 1.8 | 47

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.11.1 Device Information Command

Shows detailed information about the target device.
Command Line Syntax

$ commander device info

Command Line Usage Output

Part Number : EFR32MG1P233F256GM48
Die Revision : A0

Production Ver - 0O

Flash Size : 256 kB

SRAM Size : 32 kB

Unique ID = 000b57000003b2f0
DONE

6.11.2 Device Reset Command
Resets a device using a pin reset.

Command Line Syntax

$ commander device reset

Command Line Usage Output

Resetting chip...
DONE

6.11.3 Device Recovery Command

On EFM32 and EFR32 devices, this command tries to recover a device that has lost debug access due to misconfiguration of clocks,
GPIO pins, or similar. Recovery is not supported on all devices, and in some cases requires the kit corresponding to the device you
want to recover, for example, an EFM32TG STK to recover an EFM32TG device.

On EM3xx devices, this command can be used to recover from option byte failure.
Command Line Syntax
$ commander device recover

Command Line Usage Output

Recovering "bricked" device...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 48

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.11.4 Device Z-Wave QR Code Command

The Z-Wave QR code command is used to read out the QR code from all Z-Wave devices. The QR code is 90 bytes, displayed as
ASCII characters, and stored in the TOKEN_MFG_ZW_QR_CODE manufacturing token.

The QR code is generated in the chip during initialization. When the QR code is correctly initialized, the value of the manufacturing
token TOKEN_MFG_ZW_INITIALIZED is changed from OxFF to 0x00. The optional --timeout option is used to indicate how long
Simplicity Commander should wait for the QR code to be initialized. If no time is given, the default is 5000 ms.

Command Line Syntax

$ commander device zwave-grcode [--timeout <timeout in ms>]

Command Line Input Example

commander device zwave-grcode --timeout 5000

Command Line Usage Output

QR code: 900132782003515253545541424344453132333435212223242500100435301537022065520001000000300578
DONE

6.12 External SPI Flash Commands

Simplicity Commander supports reading, writing, and erasing data on an external SPI flash on a limited selection of boards and devi-
ces. The following configurations are currently supported:
* The integrated SPI flash on EFR32MG1x632 and EFR32MG1x732 devices

* The MX25 SPI flash on EFR32 radio boards

6.12.1 Erase External SPI Flash Command

Use this command to erase data on an external flash. By default, the erased range is read back to verify that it was actually erased.
This blank check can be disabled by including the --noverify option.

The extflash erase command always erases complete sectors. Any sector overlapping with the range provided will be erased. All
currently supported flash devices have a sector size of 4096 bytes. For example, erasing with option --range OxE00:0x1100 will effec-
tively erase the first two sectors (equivalent to --range 0x0:0x2000).

Command Line Syntax

$ commander extflash erase --range <range expression> [--noverify]

Command Line Input Example

$ commander extflash erase --range 0x1000:0x3000

Command Line Output Example

Erasing 8192 bytes from 0x00001000 on external flash.
Resetting target...

Uploading flashloader...

Erasing external flash...

Verifying written data...

Waiting for flashloader to become ready...

Reading from external flash...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 49

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.12.2 Read External SPI Flash Command
Use this command to read from external flash.

Command Line Syntax

$ commander extflash read --range <range expression>

Command Line Input Example

$ commander extflash read --range 0x0:+0x20

Command Line Output Example

Reading 32 bytes from 0x00002000 on external flash.
Resetting target...

Uploading flashloader...

Waiting for flashloader to become ready...

Reading from external flash...

{address: 0 1 2 3 4 5 6 7 8 9 A B C D E F}
00002000: 48 65 6C 6C 6F 20 57 6F 72 6C 64 21 OA FF FF FF
00002010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
DONE

6.12.3 Write External SPI Flash Command
Use this command to write to external flash.
Any existing content in the affected flash sectors will be erased before writing.

In contrast to the flash command for internal flash, the extflash write command always flashes the raw content of the given file. If,
for example, an S-record file is provided, the ASCII content of the file is written; the S-record format is not parsed and written to the
addresses specified in the file.

Command Line Syntax

$ commander extflash write <filename> --address <start address>

Command Line Input Example

$ commander extflash write myfile.txt --address 0x2000

Command Line Output Example

Flashing 13 bytes to 0x00002000 on external flash.
Resetting target...

Uploading flashloader...

Waiting for flashloader to become ready. ..

Erasing external flash...

Writing to external flash...

Verifying written data. ..

Waiting for flashloader to become ready. ..

Reading from external flash...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 50

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.13 Advanced Energy Monitor Measure Command

The Advanced Energy Monitor (AEM) command measures the average current in a time window. The --windowlength is in millisec-
onds (ms) and is defined as the duration where current samples will be measured and averaged. The default is 100 ms if no time is
given.

Command Line Syntax

$ commander aem measure [—-windowlength <time in ms>]

Command Line Input Example

$ commander aem measure —windowlength 200

Command Line Output Example

Averaged over 200 ms:
Current [mA]: 5.359

Power [mW] : 17.763
Voltage [V] : 3.314
DONE

6.14 Serial Wire Output Read Commands

Simplicity Commander supports reading and dumping data received over Serial Wire Output (SWO) using the swo read command.
When the command is executed, the target device is reset. The command will then read and dump SWO data until the application is
terminated by pressing Ctrl+C, or one of the conditions described below is met.

6.14.1 Configure SWO Speed

This command sets the SWO speed frequency in Hz. The default SWO speed is 875000 Hz. The SWO speed must match the frequen-
cy used by the target application.

Command Line Syntax

$ commander swo read [—swospeed <frequency in Hz>]

Command Line Input Example

$ commander swo read —swospeed 1000000

Command Line Output Example

<data written by the target application at 1 MHz>
Got signal 2, exiting.-..

6.14.2 Read SWO Until Timeout

This command sets the number of seconds for the adapter to wait without receiving data before it times out. The default is to never time
out.

Command Line Syntax

$ commander swo read [—-timeout <timeout in s>]

Command Line Input Example

$ commander swo read —timeout 1

Command Line Output Example

<data written by the target application>
Timeout: No SWO output for 1 seconds.
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 51

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.14.3 Read SWO Until a Marker Is Found
If the --endmarker option is used, the command will terminate after finding the specified string in the SWO stream.

Command Line Syntax

$ commander swo read [—endmarker <end marker>]

Command Line Input Example

$ commander swo read [—endmarker --finished--]

Command Line Output Example

<data written by the target application>
--Finished--
DONE

6.14.4 Dump Hex Encoded SWO Output

If the --hex option is used, all input and output is converted to a hexadecimal string. This is useful if the target dumps binary data. If the
--hex option is used, --endmarker must also be hex-encoded.

Command Line Syntax

$ commander swo read [—-hex] [--endmarker <hex encoded end marker>]

Command Line Input Example

$ commander swo read —hex --endmarker 50415353

Command Line Output Example

0a5374617274696e6720746573742067726%757020434d550a434d553a333836323a546573745F434d555142756751363639393a50415353
DONE

6.15 NVM3 Commands

The Third Generation Non-Volatile Memory (NVM3) module in the Gecko SDK provides a way to store data in non-volatile memory
(flash) on EFM32 and EFR32 devices. Refer to UG103.7: Non-Volatile Memory Fundamentals or AN1135: Using Third Generation Non-
Volatile Memory (NVM3) Data Storage in Dynamic Multiprotocol Applications for more details on NVM3.

Simplicity Commander supports reading out the NVM3 data area from a device and parsing the NVM3 data to extract stored values.
This can be useful in a debugging scenario where you may need to find out the stored state of an application that has been running for
some time.

silabs.com | Building a more connected world. Rev. 1.8 | 52

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15.1 Read NVM3 Data From a Device
This command searches for an NVM3 area in the device's flash and dumps the content to a file in .bin, .s37 or .hex format.

The optional --range parameter can be used to specify the memory range where Simplicity Commander should search for NVM3 data.
If no range is given, the entire flash is searched.

Command Line Syntax

$ commander nvm3 read -o <outfile> [--range <startaddress>:<endaddress>]

Command Line Input Example

$ commander nvm3 read -o my_nvm3_data.s37

Scans through the device flash and searches for a valid NVM3 area. When it is found, the NVM3 area is written to the file named
my_nvm3_data.s37.

Command Line Output Example

Reading 24576 bytes from 0x000fa000. ..
Writing to my nvm3 data.s37...
DONE

6.15.2 Parse NVM3 Data

This command takes an image file containing NVM3 data and parses the contents. The parsed NVM3 objects are printed to standard
out.

The optional --range parameter can be used to specify the memory range where Simplicity Commander should search for NVM3 data.
If no range is given, the entire file is searched.

The optional --key parameter can be used to specify specific NVM3 keys to look up. It can be used multiple times to look up more than
one key at a time. Objects with more than eight bytes of data will be truncated when listing all objects. Use the --key parameter to
select objects whose data should be displayed.

Command Line Syntax
$ commander nvm3 parse <file> [--range <startaddress>:<endaddress>] [--key <object key>]

Command Line Input Example

$ commander nvm3 parse my_nvm3_data.s37

Scans through the given file and searches for valid NVM3 data. When it is found, the data is parsed and printed to standard out.

Command Line Output Example

Parsing file my nvm3_data.s37...
Found NVM3 range: OxO000FAO00 - 0x00100000
All NVM3 objects:

KEY - TYPE - SIZE - DATA
0x00001 - Data - 4 B - 2A 00 00 00
0x00002 - Data - 16 B - 73 36 57 CA 6B CE CF E2 (+ 8 more bytes)
0x00003 - Counter - 4B -2

NVM3 erase count: 1

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 53

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15.3 Initialize NVMS3 Area in a File

The nvm3 initfile command creates a blank NVM3 area in an image file. For example, this feature is useful to create a file that the
nvm3 set command can work on to create a default set of NVM3 data that can be written during production.

The size and location of the NVM3 area must be given and must match the size and location used in the embedded application using
the NVM3 area.

Command Line Syntax

$ commander nvm3 initfile --address <location> --size <size in bytes> --device <target device part number> --
outfile <image Ffile>

Command Line Input Example

$ commander nvm3 initfile --address O0xfa000 --size O0x6000 --device EFR32MG12P233F1024 --outfile
my_nvm3_data.s37

This creates a 24 kB NVM3 area spanning the flash address range 0xfa000 - 0x100000.

Command Line Output Example

Placing NVM3 area at address 0x000fa000
Writing to my nvm3 data.s37...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 54

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15.4 Write NVM3 Data Using a Text File

The nvm3 set command takes an image file containing an NVM3 data region and sets the value of one or more NVM3 objects. The
objects may already exist, in which case the value is updated. If the object does not already exist, it is created. The definition of the data
to write can be passed either as a text file (--nvm3file) or as command line parameters (--object and --counter).

The text file passed by the --nvm3fi le option must have the following format:
» Each line defines a single object or counter.

* Empty lines are ignored.

* Lines starting with # are ignored.

Each line in the file must have the following syntax:
<key>:<type>:<data>

<key> is the NVM3 object key which is the unique identifer used by the embedded application. It has a maximum size of 20 bits (maxi-
mum value OXFFFFF).

<type> is the NVM3 object type. It can be one of two values: OBJ or CNT. OBJ indicates a plain byte array. CNT indicates an NVM3
counter type (32-bit unsigned integer).

<data> is the value the object should be set to. For counter types, the value is interpreted as an unsigned integer which can be prefixed
with Ox to indicate a hexadecimal value. Byte arrays are always parsed as hexadecimal and should not be prefixed with Ox.

Example File

0x00001 : OBJ : 01020304AABBCCDD
0x01000 : CNT : 0Ox80
0x01001 : CNT : 42

This file sets the object with ID 0x1 to be a byte array of eight bytes in length with the contents above.
The object with ID 0x1000 is a counter with value 0x80 (128). The object with ID 0x1001 is a counter with value 42.

Command Line Syntax

$ commander nvm3 set <input image file> --nvm3file <filename> --outfile <image file>

Command Line Input Example

$ commander nvm3 set my nvm3_data.s37 --nvm3file nvm3_objects.txt --outfile my modified_nvm3_data.s37

nvm3_objects.txt is parsed for NVM3 objects following the format described above. The given input image file is scanned for a valid
NVM3 region. The objects defined in the text file are written into the NVM3 region and the modified output is written to the output image
file.

Command Line Output Example

Parsing file my nvm3_data.s37...

Found NVM3 range: OxO00FAQ000 - 0x00100000
Setting NVM3 object: 0x00001 = 01020304AABBCCDD
Setting NVM3 counter: 0x01000 = 128 (0x00000080)
Setting NVM3 counter: 0x01001 = 42 (0x0000002a)
Writing to my_modified_nvm3_data.s37...

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 55

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.15.5 Write NVM3 Data Using CLI Options

In some cases, it may be more convenient to set the NVM3 object data directly from the command line without using a text file. In this
instance, use the command line options --object and --counter.

The two options both use the same syntax: <key>:<data>. The definitions of <key> and <data> are the same as in 6.15.4 Write NVM3
Data Using a Text File. The only difference between the two formats is that the <type> field has been removed because it is given by
the command line option name instead.

Command Line Syntax

$ commander nvm3 set <input image file> --object <key>:<data> --counter <key>:<data> --outfile <image file>

Command Line Input Example

$ commander nvm3 set my_nvm3_data.s37 --object 0x1:01020304AABBCCDD --counter 0x1000:0x80 --counter 0x01001:42
--outfile my_modified_nvm3_data.s37

All --object and --counter parameters are parsed according to the format above. The given input image file is scanned for a valid
NVM3 region. The objects defined in the text file are written into the NVM3 region and the modified output is written to the output image
file.

Command Line Output Example

Parsing file my nvm3 _data.s37...

Setting NVM3 object: 0x00001 = 01020304AABBCCDD
Setting NVM3 counter: 0x01000 = 128 (0x00000080)
Setting NVM3 counter: 0x01001 = 42 (0x0000002a)
Writing to my modified_nvm3_data.s37...

DONE

6.16 CTUNE Commands

Wireless Gecko (EFR32™) portfolio devices support configuring the crystal oscillator load capacitance in software. The crystal oscillator
load capacitor tuning (CTUNE) values are tuned during the production test of both Wireless Gecko-based modules and Silicon Labs
Wireless Starter Kit (WSTK) radio boards. For modules, the optimal value for each device is written to the Device Information (DI) page
in flash. For radio boards, the optimal value for each board is written to an EEPROM that is inaccessible to the software running on the
target device, but readable by Simplicity Commander. The ctune commands support reading out the stored CTUNE values from these
locations, and writing and reading the CTUNE manufacturing token.

6.16.1 CTUNE Get Command

This command retrieves the CTUNE value stored in the Device Info page, the value stored in EEPROM on the board, and the value
written to the CTUNE manufacturing token. The values are displayed.

Command Line Syntax

$ commander ctune get
Command Line Input Example
$ commander ctune get

Command Line Output Example

Getting CTUNE values from the Device Info page, stored in EEPROM on the board, and the MFG token.
DI: Not set

Board: 346
Token: 346
DONE

Note: Not all devices have the CTUNE value stored in both the Device Info page and in EEPROM on the board. If this is the case, the
value is displayed as "Not set".

silabs.com | Building a more connected world. Rev. 1.8 | 56

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.16.2 CTUNE Set Command

This command sets the CTUNE manufacturing token to the value specified by the value option.
Command Line Syntax

$ commander ctune set <value>

Command Line Input Example

$ commander ctune set --value 346

Command Line Output Example

Setting CTUNE token to 346
DONE

6.16.3 CTUNE Autoset Command

This command retrieves the CTUNE value from EEPROM on the board and sets the CTUNE manufacturing token to this value.
Command Line Syntax

$ commander ctune autoset

Command Line Input Example

$ commander ctune autoset

Command Line Output Example

Getting CTUNE value stored on the board...
Board: 346
Setting the CTUNE value...

6.17 Security Commands

silabs.com | Building a more connected world. Rev. 1.8 | 57

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.1 Get Device Status

This command prints Secure Element device information status, including:

Firmware version

Serial number

Device erase status

Secure debug unlock status
Tamper status

Secure boot status

Command Line Syntax

$ commander security status

Command Line Input Example

$ commander security status

Command Line Output Example

SE Firmware version : 1.1.3

Serial number - 0000000000000000d0cT5efffe68a68b
Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0x20 - OK

DONE

Debug lock enabled means that the debug access is locked. Device erase disabled means that if the device is locked, it is not possible
to regain debug access through a device erase. Security debug unlock enabled means that if the device is locked, debug access can
be regained using the security unlock command. If both device erase and secure debug unlock are disabled, it is not possible to
regain debug access if the device is locked. Secure boot enabled means that all images running on the device must be signed with the
private sign key corresponding to the public sign key written to the device. Boot status shows if, for example, secure boot failed or if the
boot is OK.

silabs.com | Building a more connected world.

Rev.1.8 | 58

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.2 Generate Key Pair

This command generates standard random key pairs. Among other things, the generated key pair can be used in the access certificate.
The keys are not stored in the Security Store. For more information, see 5.1 Security Store.

Command Line Syntax
$ commander security genkey --type <ecc-p256|aes-ccm> --privkey <filename> --pubkey <filename> -o <filename>

Command Line Input Example

$ commander genkey --type ecc-p256 --privkey private_key.pem --pubkey public_key.pem

Generates a key pair using the EDCSA-P256 algorithm and writes the private key to private_key.pem and the public key to pub-
lic_key.pem.

Command Line Output Example

Generating ECC P256 key pair...

Writing private key file in PEM format to private_key.pem...
Writing public key file in PEM format to public_key.pem...
DONE

Command Line Input Example

$ commander genkey --type aes-ccm -0 key.txt

Generates a keyfile to be used for EBL/GBL encryption and decryption and writes the key to key.txt.

Command Line Output Example

Using /dev/random for random number generation
Gathering sufficient entropy... (may take up to a minute)...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 59

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.3 Write Public Key to Device
IMPORTANT: This is a one-time command. It cannot be run more than once per device.

This one-time command permanently locks the device to this key pair. There are two different public keys that can be written to the
device.

« Command key - the corresponding private key is used to create certificates to perform secure debug unlock.
+ Sign key - the corresponding private key must sign all code that is to run on the device when Secure Boot is enabled.

When Secure Debug Unlock is enabled, a locked device may temporarily unlock debug access by creating a certificate signed by the
private command key.

When Secure Boot is enabled, all code that runs on the device must be signed by the private sign key.

Command Line Syntax

$ commander security writekey [--command <public key PEM file>] [--sign <public key PEM file>]

Command Line Input Example

$ commander security writekey --command command_public_key.pem

Command Line Output Example

Device has serial number 000000000000000014b457fffed50c35

Please look through any warnings before proceeding.
THIS 1S A ONE-TIME command, all code to be run on the device must be signed by this key.
Type "continue® and hit enter to proceed or Ctrl-C to abort:

continue
DONE

6.17.4 Read Public Key from Device

This command reads out a public key from the device. There are two different public keys that can be stored on the device using the
commander security writekey command.

« Command key — the corresponding private key is used to create certificates to perform secure debug unlock or disable tamper.
» Sign key — the corresponding private key must sign all code that is to run on the device when Secure Boot is enabled.

By providing an output file, the key will be written to the file. Otherwise, the key will be printed to the Command Line Interface (CLI) as a
byte array.

If the optional --nostore option is not used, the key will also be stored in the Security Store.
Command Line Syntax
$ commander security readkey [--command] [--sign] [--outfile <filename>] [--nostore]

Command Line Input Example

$ commander readkey --command --outfile command_public_key.pem

Command Line Output Example

Writing public key file in PEM format to key.pem...
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 60

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.5 Configure Lock Options

The security lockconfig command enables or disables secure debug unlock. When secure debug unlock is enabled, a locked de-
vice may be temporarily unlocked by running a commander security unlock command. If secure debug unlock is disabled, the only
way to unlock a locked device is to run a commander security erasedevice command, given that device erase has not been disa-
bled. If both device erase and secure debug unlock are disabled, there is no way to unlock debug access to a locked device.

Note: Secure debug unlock must be enabled before the device is locked.

Command Line Syntax

$ commander security lockconfig --secure-debug-unlock <enable/disable>

Command Line Input Example

$ commander security lockconfig --secure-debug-unlock enable

Command Line Output Example

Secure debug unlock was enabled.
DONE

6.17.6 Lock Debug Access

The lock command locks the debug interface on the device. If secure debug unlock has been enabled, the device may be unlocked
using the unlock command. If device erase has not been disabled, the debug access may also be unlocked using the commander
security erasedevice command. However, this also triggers a mass erase on the device.

Command Line Syntax

$ commander security lock
Command Line Input Example
$ commander security lock

Command Line Output Example

Device is now locked.
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 61

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.7 Secure Debug Unlock

The security unlock command opens debug access on a locked device temporarily without erasing the flash content. When running the
commander security unlock command, Simplicity Commander will use all available files in the Security Store and from command line
options in an attempt to unlock debug access. If anything is missing, you will be asked to provide the file as an option to the command.
All files generated or given as command line options are stored in the Security Store, unless the --nostore option is used.

For more information about Secure Debug, see AN1190: EFR32xG21 Secure Debug.

There are several different ways to unlock the debug access, as illustrated in the following figure. The blue fields are actions and the
red fields are artifacts.

silabs.com | Building a more connected world. Rev. 1.8 | 62

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

unlock command|
executed

‘unlock payload)
exists?
Y n

certificate exists? |
A

~ certificate is | generate
signed? ‘ certificate keys
Y n
) Y
certificate 5ignature| generate
exists? certificate
Y n
R
‘command key
exists?
| P
Y
sign certificate with]
command key
L I
- ‘ ~
‘command signature|
exists?
e

| R
| private certificate|
key exists?
¥l (n

‘-’generatew
command

1

5|gn command mth}

\ certlﬂcate key

(unlock error |

Figure 6.1. Unlock Flow

Command Line Syntax

$ commander security unlock [--cert <signed access certificate> --cert-signature <signature> --command-
signature <signature> --cert-privkey <keyfile> --cert-pubkey <keyfile> --command-key <keyfile> --nostore]

Command Line Input Example

$ commander security unlock --command-key command_key.pem

silabs.com | Building a more connected world. Rev. 1.8 | 63

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

This example uses and generates a certificate and command signature on-the-fly using the provided command key to sign the certifi-
cate. All the generated files and the command key are stored in the Security Store.

Command Line Output Example

Command public key stored in:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
command_pubkey . pem

Command private key stored in:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
command_key . pem

Authorization file written to Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
certificate_authorizations. json

Generating ECC P256 key pair...

Cert public key stored at:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_pubkey.pem

Cert private key stored at:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Command key matches public command key found on device. Signing certificate...

Certificate was signed with key:

test-cases/common/security_testfiles/command_key.pem

Created unsigned unlock command

Signed unlock command using
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Command Line Input Example

$ commander security unlock --cert access_certificate.bin --cert-privkey cert_key.pem

This example unlocks the device with a signed access certificate and the private certificate key corresponding to the public key in the
access certificate. The certificate and key are stored in the Security Store.

Command Line Output Example

/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
access_certificate.bin

Cert key written to Security Store:
/Users/example/Library/Preferences/SiliconlLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_pubkey.pem

Created unsigned unlock command

Signed unlock command using
/Users/example/Library/Preferences/SiliconlLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Command Line Input Example

$ commander security unlock --cert-signature cert_signature.bin --command-signature command_signature.bin

This example uses externally generated signatures for both the access certificate and command file. The access certificate signature is
appended to the certificate and stored in the Security Store. The command signature is validated against the public key in the certifi-
cate.

Command Line Output Example

Using certificate from Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
access_certificate.bin

Certificate in Security Store is not signed.

Moved existing file to:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/

silabs.com | Building a more connected world. Rev. 1.8 | 64

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

archive/access_certificate.bin

Signed certificate written to Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
access_certificate.bin

Command signature is valid

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

Command Line Input Example

$ commander security unlock

When the device has been unlocked with the current challenge, the unlock payload is stored in the Security Store. The next time the
unlock command is run, the device is unlocked directly with the unlock payload.

Command Line Output Example

Unlocking with unlock payload:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
challenge_4329288395adfc4eea436e5d64dd296b/unlock_payload_0000000000111110.bin

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 65

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.8 Disable Tamper

Secure Vault products are capable of detecting certain types of tamper events and responding to mitigate the attack. This provides an
extra layer of protection against attacks that rely on physically tampering with the product.

Before this command can be executed, the tamper sources must be configured in the One-Time-Programmable (OTP) settings of the
devices. See 6.17.16 Write User Configuration for more information about how this is done.

The process of disabling tamper follows the same flow as the security unlock command. For more information about the flow, see
6.17.7 Secure Debug Unlock.

A certificate and a signed challenge are required to disable tamper. The certificate—including tamper authorizations—is generated and
signed with a command key. The certificate contains a public key and the corresponding private key must be used to sign a challenge
from the device to disable tamper sources. The --disable-param option determines which tamper sources to disable. If this option is
not provided, Simplicity Commander will extract the tamper authorizations from the certificate and disable everything allowed by the
certificate. If the certificate is not available, all sources will be disabled.

The tamper sources are disabled until the next Power On Reset.

Command Line Syntax

$ commander security disabletamper [--disable-param <disable-mask> --cert <signed access certificate> --cert-
signature <signature> --commandsignature <signature> --cert-privkey <keyfile> --cert-pubkey <keyfile> --
command-key <keyfile> --nostore]

Command Line Input Example

$ commander security disabletamper --cert access_certificate.bin --cert-privkey cert_key.pem

Command Line Output Example

Using tamper parameters from certificate in Security Store: OxFFFfffb6
Certificate written to Security Store:
/Users/matundal/Library/Preferences/SiliconLabs/commander/SecurityStore/
device_0000000000000000000d6FfFffead3617/access_certificate.bin

Cert key written to Security Store:
/Users/matundal/Library/Preferences/SiliconlLabs/commander/SecurityStore/
device_0000000000000000000d6ffFffead3617/cert_pubkey.pem

Using tamper parameters from certificate in Security Store: OxFFFfffb6
Created unsigned disable tamper command

Signed disable tamper command using
/Users/matundal/Library/Preferences/SiliconLabs/commander/SecurityStore/
device_0000000000000000000d6fFfFfead3617/cert_key.pem

Tamper successfully disabled.

Command disable tamper payload was stored in Security Store

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 66

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.9 Device Erase using Secure Element
This command performs a device mass erase and resets the debug configuration to its initial unlocked state.

The complete flash and RAM of the system is cleared, excluding the user data page and one-time programmable commissioning infor-
mation in the Secure Element.

If device erase has been disabled, this command is not available.

Note: After a device erase, the DCI interface is unavailable until the device has been reset
Command Line Syntax

$ commander security erasedevice

Command Line Input Example

$ commander security erasedevice

Command Line Output Example

Successfully erased device
DONE

6.17.10 Disable Device Erase

IMPORTANT: This is a one-time command. It cannot be run more than once.

This command permanently disables device erase. When device erase is disabled, the commander security erasedevice command
is no longer available. This means that if debug access is locked, debug access can only be opened if secure debug unlock has been
enabled before the device was locked. If not, there is no way to regain debug access. This command can be run after the device has
been locked.

Confirmation is required from the user to execute this command, except if the --noprompt option is used.
Command Line Syntax
$ commander security disabledeviceerase [--noprompt]

Command Line Input Example

$ commander security disabledeviceerase

Command Line Output Example

THIS 1S A ONE-TIME command which Permanently disables device erase.
IT secure debug lock has not been set, there is no way to regain debug access to this device.
Type "continue® and hit enter to proceed or Ctrl-C to abort:

continue
Disabled device erase successfully
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 67

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.11 Roll Challenge

This command makes the Secure Element roll or update its challenge data. The challenge is random data that must be read from the
device before an unlock command can be executed. Rolling the challenge renders existing command signatures invalid. For more infor-
mation, see 5.3 Challenge and Command Signing.

The challenge cannot be rolled before it has been used at least once—that is, by running the security unlock command or the disable
tamper command.

$ commander security rollchallenge
Command Line Input Example
$ commander security rollchallenge

Command Line Output Example

Challenge was rolled successfully.
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 68

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.12 Generate Example Authorization File

This command generates a default authorization file to be used in the certificate. The authorization file will be stored in Security Store
unless the --nostore option is used.

Default Authorization File for Devices without Secure Vault

""debug_authorizations":{
"ENABLE_DEBUG_PORT": true
}

}

Default Authorization File for Devices with Secure Vault

""debug_authorizations":{
""ENABLE_DEBUG_PORT": true
by

"tamper_authorizations':{
"FILTER_COUNTER": 1,
"WATCHDOG™": 1,
""SE_RAM_CRC": 1,
""SE_HARDFAULT": 1,
""SOFTWARE_ASSERTION": 1,
""SE_CODE_AUTH": 1,
""USER_CODE_AUTH": 1,
“"MAILBOX_AUTH": 1,
"“DCI_AUTH": 1,
"OTP_READ": 1,
""AUTO_CODE_AUTH": 1,
"SELF_TEST": 1,
"TRNG_MONITOR™: 1,
"PRSO™": 1,

"PRS1":
"PRS2":
""PRS3":
"PRS4™:
""PRS5":
"PRS6": 1,

"PRS7": 1,
""DECOUPLE_BOD™": 1,
“"TEMP_SENSOR": 1,
"“VGLITCH_FALLING™: 1,
"VGLITCH_RISING™: 1,
"SECURE_LOCK™: 1,
""SE_DEBUG™: 1,
“DGLITCH": 1,
"SE_ICACHE": 1

RPRRRPRR

}

Debug Authorization

Enable Debug Port must be set to frue in order to perform a secure debug unlock. For more information about secure debug unlock,
see 6.17.7 Secure Debug Unlock.

Tamper Authorizations

The Tamper Authorizations indicate which sources may be disabled. By default all sources may be disabled. For more information
about disabling tamper sources, see 6.17.8 Disable Tamper.

Command Line Syntax

$ commander security genauth [-o <filename>] [--nostore]

Command Line Input Example

$ commander security genauth -o certificate _authorization. json --nostore

silabs.com | Building a more connected world. Rev. 1.8 | 69

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

Command Line Output Example

Authorization file stored in:
certificate_authorization.json
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 70

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.13 Generate Access Certificate

Access certificates are used to unlock debug access on the device. For more information on unlocking debug access, see 6.17.7 Se-
cure Debug Unlock. The certificate and the keys provided to or generated by Simplicity Commander are stored in Security Store unless
the --nostore option is used. If --cert-pubkey or --authorization are not used as options on the command line, Simplicity
Commander checks if the files are stored in Security Store. If the files are not in Security Store, Simplicity Commander generates a
default authorization file that may be edited. If the file is edited, a new certificate must be generated. Simplicity Commander will also
generate a pair of certificate keys if the --cert-pubkey option is not used. If the certificate keys are generated, the --nostore option
cannot be used. If the --command-key option is not used on the command line and not located in Security Store, Security Commander
generates an unsigned certificate. To use the certificate to unlock debug access, a certificate signature must be generated and provi-
ded. If the device for which the certificate is made is connected, Simplicity Commander retrieves the device serial number directly .

Device Serial Number

Authorization

Certificate Public Key

Access Certificate Signature
Signed by Command private key

Figure 6.2. Access Certificate
Command Line Syntax

$ commander security gencert [--cert-pubkey <public key file>] [--authorization <auth-file>] [--command-key
<private key file>] [--devserialno <serial number>] [-o <filename>] [--nostore]

Command Line Input Example

$ commander security gencert

This example generates an unsigned certificate, as the command private key is not provided as a command option, nor is it located in
Security Store. The public certificate key is not provided either, so Simplicity commander generates a pair of certificate keys and stores
them in Security Store. A default authorization file is also generated and stored in Security Store.

Command Line Output Example

Authorization file written to Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
certificate_authorizations. json

Generating ECC P256 key pair...

Cert public key stored at:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_pubkey.pem

Cert private key stored at:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
cert_key.pem

Certificate was not signed

DONE

Command Line Input Example

$ commander security gencert --cert-pubkey cert_pubkey.pem --authorization certificate_authorizations.json --
command-key command_key.pem -0 access_certificate.bin --nostore

In this example, all files needed to generate the certificate are provided as command line options. The device serial number is taken
directly from the connected device. The certificate is signed with the private command key, and is ready to be used to unlock debug
access.

Command Line Output Example

silabs.com | Building a more connected world. Rev. 1.8 | 71

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

Command key matches public command key found on device. Signing certificate...
Certificate was signed with key:

command_key . pem

DONE

Command Line Input Example

$ commander security gencert
This example uses files already located in Security Store to generate a signed certificate. The certificate is stored in Security Store.

Command Line Output Example

Using authorizations from Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
certificate_authorizations. json

Using public key from Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0ct5efffe68a68b/
cert_pubkey.pem

Found command key in Security Store:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
command_key . pem

Certificate was signed with key:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cT5efffe68a68b/
command_key . pem

DONE

6.17.14 Generate Unsigned Command File

The commander security gencommand command retrieves the security challenge from the device and stores it in a file with other data
as described in Figure 5.2 Unlock Command Signature on page 19. The signature of this file using the private certificate key can be
used as part of the payload to perform a secure debug unlock.

Unless the --nostore option is used, the unsigned command file will be stored in the Security Store.

If the user has the private certificate key, Simplicity Commander automatically generates the command file and signature using the
commander security unlock command. If the command file is signed by an external process—for example, an HSM—the command
signature needs to be passed as a command line option when executing the commander security unlock command.

Command Line Syntax
$ commander security gencommand --action debug_unlock [-o <output file>] [--nostore]

Command Line Input Example
$ commander security gencommand --action debug-unlock -o unlock _command_to be_signed.bin --nostore
Command Line Output Example

Unsigned command file written to:
unlock_command_to_be_signed.bin
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 72

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.15 Generate Example Configuration File

This command generates a default configuration file to be used with the security_writeconfig command. The file is stored in Securi-
ty Store unless the --nostore option is used.

Default Configuration File for Devices without Secure Vault

{
“mcu_fFflags": {
""SECURE_BOOT_ENABLE": true,
“'SECURE_BOOT_VERIFY_CERTIFICATE": false,
""SECURE_BOOT_ANTI_ROLLBACK™": true,
“'SECURE_BOOT_PAGE_LOCK_NARROW": false,
""SECURE_BOOT_PAGE_LOCK_FULL™": true
}
¥

Default Configuration File for Devices with Secure Vault

{
"mcu_fFflags": {
""SECURE_BOOT_ENABLE™": true,
"'SECURE_BOOT_VERIFY_CERTIFICATE": false,
""SECURE_BOOT_ANTI_ROLLBACK": true,
"'SECURE_BOOT_PAGE_LOCK_NARROW": false,
""SECURE_BOOT_PAGE_LOCK_FULL": true

}

amper_levels™: {
"FILTER_COUNTER": O,
"WATCHDOG": 4,
""SE_RAM_CRC": 4,
""SE_HARDFAULT": 4,
""SOFTWARE_ASSERTION": 4,
"'SE_CODE_AUTH": 4,
""USER_CODE_AUTH": 4,
"“"MAILBOX_AUTH": O,
"DCI_AUTH": 0,
"OTP_READ": O,
""AUTO_CODE_AUTH": O,
"SELF_TEST": 4,
"TRNG_MONITOR": O,
"PRSO": O,
“"PRS1":
""PRS2":
""PRS3":
"PRS4":
""PRS5":
""PRS6":
"PRS7": O,
""DECOUPLE_BOD™": 4,
“"TEMP_SENSOR": 1,
"VGLITCH_FALLING": O,
"VGLITCH_RISING": O,
""SECURE_LOCK™: 4,
"'SE_DEBUG™: 0,
"“DGLITCH": O,
""SE_ICACHE": 4

[eNeNeoNoNoNoNe)

3.

“tamper_Ffilter" : {
"“FILTER_PERIOD": O,
"FILTER_THRESHOLD": O,
""RESET_THRESHOLD"™: O

}

amper_flags™: {
"DGLITCH_ALWAYS_ON": false

}
}

MCU settings
+ Secure Boot Enable — Enables Secure Boot on the device if set. Requires all applications running on the device to be signed.

silabs.com | Building a more connected world. Rev.1.8 | 73

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

Secure Boot Verify Certificate — Applications running on the device must be signed using an intermediary certificate if this option is
set. It is still possible to use certificates for signing even if this option is not set. For more information, see 6.5.9 Signing an Applica-
tion for Secure Boot using an Intermediary Certificate.

Secure Boot Anti Rollback — If set, application images with a lower version than the image currently stored in flash will not run on
the device.

Secure Boot Page Lock Narrow — Flash pages validated by the Secure Boot process are locked down to prevent re-flashing by
means other than through Root Code. Pages from 0 through the page where the Secure Boot signature of the application is located
are locked down, not including the last page if the signature is not on a page boundary.

Secure Boot Page Lock Full — Flash pages validated by the Secure Boot process are locked down to prevent re-flashing by means
other than through Root Code. Pages from 0 through the page where the Secure Boot signature of the application is located are
locked down, including the last page if the signature is not on a page boundary.

Tamper Levels

The different tamper sources are listed under tamper levels. The default configuration is an absolute minimum. The Root Code will nev-
er set tamper levels to a lower setting than the default configuration. The tamper levels are listed in the following table.

Table 6.1. Tamper Levels

Tamper Level | Description

1

No action taken

2 Generate SE interrupt
3 Increment filter counter
4 System Reset

5 Reserved

6 Reserved

7

Erase OTP (Makes the device unrecoverable; it will neve boot again.)

Command Line Syntax

$ commander security genconfig [-o <filename>] [--nostore]

Command Line Input Example

$ commander security genconfig -o user_configuration.json --nostore

Command Line Output Example

Configuration file stored in:
user_configuration. json
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 74

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.16 Write User Configuration
IMPORTANT: This is a one-time command. It cannot be run more than once.
The commander security writeconfig command sets the configurations determined in the configuration file in the Root Code.

Secure Boot is enabled through this command. Before Secure Boot is enabled, you must write the public sign key to the device. For
more information on writing keys to the device, see 6.17.3 Write Public Key to Device. In addition, a configuration file must be gener-
ated and the Secure Boot Enabled flag must be set to true. If no configuration file is provided, a default configuration will be generated.

In Simplicity Commander version 1.9, tamper configuration is supported on devices with Secure Vault. The tamper configuration deter-
mines the response from the Secure Element in the occurrence of a tamper event. For more information about the configuration file and
tamper configuration, see 6.17.15 Generate Example Configuration File.

For more information about Secure Boot, see AN1218: Series 2 Secure Boot with RTSL.

For more information about tamper events, see 6.17.8 Disable Tamper.

Command Line Syntax

$ commander security writeconfig [--configfile <config file>] [--nostore] [--nopromt]

Command Line Input Example

$ commander security writeconfig --configfile user_configuration.json

Command Line Output Example

THIS 1S A ONE-TIME configuration: Please inspect file before confirming:
/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b/
user_configuration. json

Type "continue® and hit enter to proceed or Ctrl-C to abort:

continue
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 75

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.17 Read User Configuration

This command returns the One-Time Programmable (OTP) setting from the device. If the device has not been configured with the
6.17.16 Write User Configuration command, no OTP settings are available to read.

Command Line Syntax

$ commander security readconfig

Command Line Input Example

$ commander security readconfig

Command Line Output Example

MCU Flags

Secure Boot : Enabled
Secure Boot Verify Certificate : Disabled
Secure Boot Anti Rollback : Enabled
Secure Boot Page Lock Narrow : Disabled
Secure Boot Page Lock Full : Enabled

Tamper Levels
FILTER_COUNTER
WATCHDOG
SE_RAM_CRC
SE_HARDFAULT
SOFTWARE_ASSERT ION
SE_CODE_AUTH
USER_CODE_AUTH
MAITLBOX_AUTH
DCI1_AUTH
OTP_READ
AUTO_CODE_AUTH
SELF_TEST
TRNG_MONITOR
PRSO

PRS1

PRS2

PRS3

PRS4

PRS5

PRS6

PRS7
DECOUPLE_BOD
TEMP_SENSOR
VGLITCH_FALLING
VGLITCH_RISING
SECURE_LOCK
SE_DEBUG
DGLITCH
SE_1CACHE

PrOOPMOORPRDMNOOOOOOOOORMODOOOMMMAMDMDMIMO

Tamper Filter
Filter Period
Filter Treshold
Reset Treshold

o oo

Tamper Flags
Digital Glitch Detector Always On: Disabled

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 76

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.17.18 Get Security Store Path

Get the path to the security store. If a device is connected or the --deviceserialno option is provided, the device specific path is re-
turned. Otherwise, the path to Security Store is returned.

Command Line Syntax
$ commander security getpath [--deviceserialno <deviceserialno>]

Command Line Input Example

$ commander security getpath

Command Line Output Example

/Users/example/Library/Preferences/SiliconLabs/commander/SecurityStore/device_0000000000000000d0cf5efffe68a68b
DONE

6.18 Util Commands

6.18.1 Key Generation

Generates a keyfile to be used for encryption and decryption and outputs the keyfile to the specified filename.
Command Line Syntax

$ commander util genkey --type aes-ccm --outfile <filename>

Command Line Input Example

$ commander util genkey --type aes-ccm --outfile key.txt

Command Line Output Example

Using /dev/random for random number generation
Gathering sufficient entropy... (may take up to a minute)...
DONE

6.18.2 Generating a Signing Key

Creates an EDCSA-P256 key pair and outputs the result to the specified private and public key files. For more information, see UG266:
Silicon Labs Gecko Bootloader User's Guide.

Command Line Syntax
$ commander util genkey --type ecc-p256 --privkey <filename> --pubkey <filename> [--tokenfile <filename>]

Command Line Input Example

$ commander util genkey --type ecc-p256 --privkey signing_key.pem --pubkey signing_pubkey.pem

Command Line Output Example

Generating ECC P256 key pair...

Writing private key file in PEM format to signing_key.pem
Writing public key file in PEM format to signing_pubkey.pem
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 77

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.3 Key to Token

Creates a token text file containing an Elliptic Curve Cryptography (ECC) public key suitable for flashing to a device. For more informa-
tion, see UG266: Silicon Labs Gecko Bootloader User’s Guide.

Command Line Syntax

$ commander util keytotoken <input file> --outfile <filename>

Command Line Input Example

$ commander util keytotoken my_pubkey.pem --outfile keytokens.txt

Command Line Output Example

Writing EC tokens to keytokens.txt...
DONE

6.18.4 Generate Certificate

The process of signing files can be done using an intermediate certificate. These certificates can be generated with the util gencert
command. There are currently two available certificate types: GBL certificates and Secure Boot certificates. If rollback prevention is en-
abled, the device will not boot if it has seen a certificate with a higher version number. This is set by the --cert-version option. The
private key corresponding to the --cert-pubkey is used to sign the image. The certificate may either be signed directly by providing a
signing key with the --siign option or unsigned by providing the --extsign option.

Command Line Syntax

$ commander util gencert --cert-type <cert type> --cert-version <version> --cert-pubkey <key file> [--sign
<key file>|--extsign] --outfile <filename>

Command Line Input Example

$ commander gencert --cert-type secureboot --cert-version 1 --cert-pubkey cert_pubkey.pem --sign
signing_key.pem --outfile secureboot cert.bin

In this example the signing key is provided and the certificate is signed directly.

Command Line Output Example

Successfully signed certificate
DONE

Command Line Input Example

$ commander gencert --cert-type gbl --cert-version 1 --cert-pubkey cert_pubkey.pem --extsign --outfile
gbl_cert.bin

In this example an unsigned certificate is created. The signature for the certificate can be created, for example, by a Hardware Security
Module (HSM). The certificate can be signed by passing the unsigned certificate and the HSM generated signature to the util
signcert command.

Command Line Output Example

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 78

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.5 Sign Certificate

Sign a certificate with an externally created signature. You can use the optional --verify option to verify the signature by providing the
public key corresponding to the private key used to create the signature.

Command Line Syntax

$ commander util signcert <cert Tfilename> --cert-type <type> --signature <signature> [--verify <public key
file>] --outfile <filename>

Command Line Input Example

$ commander util signcert gbl_cert.bin.extsign --cert-type gbl --signature gbl_signature.bin --verify
signing_pubkey.pem --outfile signed_cert.bin

Command Line Output Example

Successfully verified signature
Successfully signed certificate
DONE

6.18.6 Verify Signature

When secure boot is enabled, all code running on the device must be signed. This command can be used as a check to verify that the
file was correctly signed, which may help in debugging in case secure boot fails, or as a verification before flashing the image. If the file
is signed using an intermediate certificate, the certificate key is used to check the signature of the file. The key given by the --verify
option is used to verify the signature of the certificate.

Command Line Syntax

$ commander util verifysign <input file> --verify <public key file>

Command Line Input Example

$ commander util verifysign my_application.bin --verify signing_pubkey.pem

Command Line Output Example

Parsing file my_application.bin...

Found application properties at 0x00000e78

Found certificate in image at location 0x0000b3a4

Successfully verified certificate signature with verification key.
Using certificate key to verify application signature.

Found signature at 0x0000b42c

Successfully verified application signature.

DONE

silabs.com | Building a more connected world. Rev. 1.8 | 79

UG162: Simplicity Commander Reference Guide
Simplicity Commander Commands

6.18.7 Application Information

Get all available information about an application by parsing the ApplicationProperties_t struct in the image. If the file does not
have application properties, no information can be extracted from the file.

Command Line Syntax

$ commander util appinfo <filename>

Command Line Input Example

$ commander util appinfo my_application.bin

Command Line Output Example

Parsing file my_application.bin...

Found application properties in image.

Application protperties info:

Signature location : 0x0000b42c
Signature type : ECDSA-P256

Long token section address : Not set (0x00000000)

Application data info:

If rollback prevention is enabled, the device will not boot if the device has seen an application with a
higher version number.

App type : The application is an MCU application

App version = 0x00000000

Product ID : 0x534551555047524144455¥4150500000

Application certificate info:

IT rollback prevention is enabled, the device will not boot if the device has seen a certificate with a higher

version number.

Certificate located at : 0x0000b3a4

Certificate version : 0x00000001

Certificate key :
0x249919c28hb28156119d2e03379b968c8a931aa9b195258e2741da28b686983dd71d0140e9a7b0d7e39de43F592163b8aa38d4e0871F5d2d88b57¢
Certificate signature :
0x013f2adc310f10f1426db74b503F3612a46ab85c7ce86c967eb965b10F7d24267101192513d9481c49c0eb0b61c1F73392cc6F6d1cd1209a9d58¢
DONE

silabs.com | Building a more connected world. Rev. 1.8 | 80

UG162: Simplicity Commander Reference Guide
Software Revision History

7. Software Revision History

The following subsections summarize the new features of Simplicity Commander by version number.

7.1 Version 1.9
2020-03-09
» Added this Convert and Modify File command:

Signing an Application for Secure Boot using an Intermediary Certificate
» Added these Security commands:

Disable Tamper

Read User Configuration
* Added these Util commands:

Key Generation
Generating a Signing Key
Key to Token

Generate Certificate

Sign Certificate

Verify Signature

Application Information

» Added clarifying details in 4.5 Memory Regions regarding mass erase and differences between EFR32 Series 1 and Series 2 devi-
ces.

7.2 Version 1.8
2019-11-21

» Added the security commands that support Secure Element functionality. See 5. Security Overview and 6.17 Security Commands
for details.

* Improved GUI
» Support for EFR32xG2x devices
» Added flash map feature
» Added blank check feature

7.3 Version 1.7
2018-11-28

* Added CTUNE manufacturing token commands.
» Added support for EFR32XG21 devices.
» Added support for generating Secure Element upgrade GBL files.

7.4 Version 1.5
2018-10-02
» Added support for analyzing the memory usage of the application using an Application Address Table (AAT).

7.5 Version 1.4
2018-09-19

» Added support for module part numbers (e.g. BGM111) as --device parameter
* Module part numbers will be read from the device when it exists (new modules only)

silabs.com | Building a more connected world. Rev. 1.8 | 81

UG162: Simplicity Commander Reference Guide
Software Revision History

7.6 Version 1.3

2018-08-14
» Added support for manipulating and writing NVM3 data.
» Added support for custom token definition files in any location.

7.7 Version 1.2
2018-03-23

» Added support for creating GBL images using the LZMA compression algorithm.

7.8 Version 1.1
2018-01-19

» Added support for writing CRC32 to an image as a means of integrity check when not using Secure Boot.
* Added the nvm3 command which supports reading NVM3 data from a device and parsing an image file containing NVM3 data.

7.9 Version 1.0

2017-11-28

» Added support for EM3xx devices.

7.10 Version 0.25

2017-06-09
Added support for Iz4 compression of GBL files:

* gbl create --compress 1z4

7.11 Version 0.24

2017-04-25
Added commands that support the Gecko Bootloader Security features:

* convert --secureboot

* gbl keygen --type ecc-p256
* gbl keyconvert

* gbl create

--bootloader option
--sign option

--extsign option
* gbl sign

7.12 Version 0.22
2017-03-03

Added commands that support the Gecko Bootloader (GBL) file format:

* gbl create
* gbl parse
* gbl keygen

silabs.com | Building a more connected world. Rev. 1.8 | 82

UG162: Simplicity Commander Reference Guide
Software Revision History

7.13 Version 0.21
2017-02-02

Added commands:
* ebl create
* ebl parse

Deprecated and hid these commands that only support version 2 of the EBL format:

* ebl encrypt
* ebl decrypt

These commands have been replaced by ebl create and ebl parse which support both version 2 and 3 of the EBL format.

Changed command:

» Creating and parsing EBL files using the convert command has been deprecated, but still supports parsing and creating EBL v2
files for backwards compatibility. New applications should use the ebl create and ebl parse commands instead.

7.14 Version 0.16

2016-06-16

Added commands:

* aem measure
* adapter ip
* swo read

7.15 Version 0.15
2016-04-27
Added commands:

* extflash
* adapter reset
* adapter dbgmode

7.16 Version 0.14
2016-02-05
Added commands:

* device lock

* device protect

* device pageerase
* device recover

7.17 Version 0.13

Not released
* Added tokenheader command.

7.18 Version 0.12

2016-01-20
» Added support for EFR32 custom tokens.

silabs.com | Building a more connected world. Rev. 1.8 | 83

UG162: Simplicity Commander Reference Guide
Software Revision History

7.19 Version 0.11
2016-01-15

Initial release.

silabs.com | Building a more connected world. Rev. 1.8 | 84

SILCON LABS

Sbou v Progusi =
2 Commsntty & Suppt =

Do you have an
. innovative idea to

- o = v keep the world
il T~ h connected?

| e

= eiiis

Explorn Our Foatured Products
riencly c

Micracontrollers wireless & RF Sensors

Smart.
Connected.
Energy-Friendly.

Products Quality Support and Community
www.silabs.com/products www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license
to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is
required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health,
which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs
products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such
unauthorized applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-
Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a
registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

®
Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
USA

SILICON LABS http://www.silabs.com

	Table of Contents
	1. Introduction
	2. File Format Overview
	2.1 Motorola S-record (s37) File Format
	2.2 Update Image File Formats
	2.3 Intel HEX-32 File Format

	3. General Information
	3.1 Installing Simplicity Commander
	3.2 Command Line Syntax
	3.3 General Options
	3.3.1 Help (--help)
	3.3.2 Version (--version)
	3.3.3 Device (--device <device name>)
	3.3.4 J-Link Connection Options
	3.3.5 Debug Interface Configuration
	3.3.6 Graphical User Interface

	3.4 Output and Exit Status

	4. EFR32 Custom Tokens
	4.1 Introduction
	4.2 Custom Token Groups
	4.3 Creating Custom Token Groups
	4.4 Defining Tokens
	4.5 Memory Regions
	4.6 Token File Format Description
	4.7 Using Custom Token Files
	4.8 Using Custom Token Files in Any Location

	5. Security Overview
	5.1 Security Store
	5.2 Access Certificate
	5.3 Challenge and Command Signing

	6. Simplicity Commander Commands
	6.1 Device Flashing Commands
	6.1.1 Flash Image File
	6.1.2 Flash Using IP Address without Verification and Reset
	6.1.3 Flash Several Files
	6.1.4 Patch Flash
	6.1.5 Patch Using Input File
	6.1.6 Flash Tokens

	6.2 Flash Verification Command
	6.3 Memory Read Commands
	6.3.1 Print Flash Contents
	6.3.2 Dump Flash Contents to File

	6.4 Token Commands
	6.4.1 Print Tokens
	6.4.2 Dump Tokens to File
	6.4.3 Dump Tokens from Image File
	6.4.4 Generate C Header Files from Token Groups

	6.5 Convert and Modify File Commands
	6.5.1 Combine Two Files
	6.5.2 Define Specific Bytes
	6.5.3 Define Tokens
	6.5.4 Dump File Contents
	6.5.5 Signing an Application for Secure Boot
	6.5.6 Signing an Application for Secure Boot using a Hardware Security Module
	6.5.7 Signing an Application for Secure Boot Signing using a Signature Created by a Hardware Security Module
	6.5.8 Adding a CRC32 for Gecko Bootloader
	6.5.9 Signing an Application for Secure Boot using an Intermediary Certificate

	6.6 EBL Commands
	6.6.1 Print EBL Information
	6.6.2 EBL Key Generation
	6.6.3 EBL File Creation
	6.6.4 EBL File Parsing
	6.6.5 Memory Usage Information from AAT

	6.7 GBL Commands
	6.7.1 GBL File Creation
	6.7.2 GBL File Creation with Compression
	6.7.3 Creating a GBL File for Bootloader Upgrade
	6.7.4 Creating a GBL File for Secure Element Upgrade
	6.7.5 Creating a Signed and Encrypted GBL Upgrade Image File from an Application
	6.7.6 Creating a Partial Signed and Encrypted GBL Upgrade File for Use with a Hardware Security Module
	6.7.7 Creating a Signed GBL File Using a Hardware Security Module
	6.7.8 GBL File Parsing
	6.7.9 GBL Key Generation
	6.7.10 Generating a Signing Key
	6.7.11 Generate a Signing Key Using a Hardware Security Module

	6.8 Kit Utility Commands
	6.8.1 Firmware Upgrade
	6.8.2 Kit Information Probe
	6.8.3 Adapter Reset Command
	6.8.4 Adapter Debug Mode Command
	6.8.5 List Adapter IP Configuration Command
	6.8.6 Adapter DHCP Command
	6.8.7 Set Static IP Configuration Command

	6.9 Device Erase Commands
	6.9.1 Erase Chip
	6.9.2 Erase Region
	6.9.3 Erase Pages in Address Range

	6.10 Device Lock and Protection Commands
	6.10.1 Debug Lock
	6.10.2 Debug Unlock
	6.10.3 Write Protect Flash Ranges
	6.10.4 Write Protect Flash Region
	6.10.5 Disable Write Protection

	6.11 Device Utility Commands
	6.11.1 Device Information Command
	6.11.2 Device Reset Command
	6.11.3 Device Recovery Command
	6.11.4 Device Z-Wave QR Code Command

	6.12 External SPI Flash Commands
	6.12.1 Erase External SPI Flash Command
	6.12.2 Read External SPI Flash Command
	6.12.3 Write External SPI Flash Command

	6.13 Advanced Energy Monitor Measure Command
	6.14 Serial Wire Output Read Commands
	6.14.1 Configure SWO Speed
	6.14.2 Read SWO Until Timeout
	6.14.3 Read SWO Until a Marker Is Found
	6.14.4 Dump Hex Encoded SWO Output

	6.15 NVM3 Commands
	6.15.1 Read NVM3 Data From a Device
	6.15.2 Parse NVM3 Data
	6.15.3 Initialize NVM3 Area in a File
	6.15.4 Write NVM3 Data Using a Text File
	6.15.5 Write NVM3 Data Using CLI Options

	6.16 CTUNE Commands
	6.16.1 CTUNE Get Command
	6.16.2 CTUNE Set Command
	6.16.3 CTUNE Autoset Command

	6.17 Security Commands
	6.17.1 Get Device Status
	6.17.2 Generate Key Pair
	6.17.3 Write Public Key to Device
	6.17.4 Read Public Key from Device
	6.17.5 Configure Lock Options
	6.17.6 Lock Debug Access
	6.17.7 Secure Debug Unlock
	6.17.8 Disable Tamper
	6.17.9 Device Erase using Secure Element
	6.17.10 Disable Device Erase
	6.17.11 Roll Challenge
	6.17.12 Generate Example Authorization File
	6.17.13 Generate Access Certificate
	6.17.14 Generate Unsigned Command File
	6.17.15 Generate Example Configuration File
	6.17.16 Write User Configuration
	6.17.17 Read User Configuration
	6.17.18 Get Security Store Path

	6.18 Util Commands
	6.18.1 Key Generation
	6.18.2 Generating a Signing Key
	6.18.3 Key to Token
	6.18.4 Generate Certificate
	6.18.5 Sign Certificate
	6.18.6 Verify Signature
	6.18.7 Application Information

	7. Software Revision History
	7.1 Version 1.9
	7.2 Version 1.8
	7.3 Version 1.7
	7.4 Version 1.5
	7.5 Version 1.4
	7.6 Version 1.3
	7.7 Version 1.2
	7.8 Version 1.1
	7.9 Version 1.0
	7.10 Version 0.25
	7.11 Version 0.24
	7.12 Version 0.22
	7.13 Version 0.21
	7.14 Version 0.16
	7.15 Version 0.15
	7.16 Version 0.14
	7.17 Version 0.13
	7.18 Version 0.12
	7.19 Version 0.11

