The Pytorch implementation is ultralytics/yolov3 archive branch. It provides two trained weights of yolov3, yolov3.weights
and yolov3.pt
This branch is using tensorrt7 API, there is also a yolov3 implementation using tensorrt4 API, go to branch trt4/yolov3, which is using ayooshkathuria/pytorch-yolo-v3.
- Input shape defined in yololayer.h
- Number of classes defined in yololayer.h
- INT8/FP16/FP32 can be selected by the macro in yolov3.cpp
- GPU id can be selected by the macro in yolov3.cpp
- NMS thresh in yolov3.cpp
- BBox confidence thresh in yolov3.cpp
- generate yolov3.wts from pytorch implementation with yolov3.cfg and yolov3.weights, or download .wts from model zoo
git clone https://github.com/wang-xinyu/tensorrtx.git
git clone -b archive https://github.com/ultralytics/yolov3.git
// download its weights 'yolov3.pt' or 'yolov3.weights'
cp {tensorrtx}/yolov3/gen_wts.py {ultralytics/yolov3/}
cd {ultralytics/yolov3/}
python gen_wts.py yolov3.weights
// a file 'yolov3.wts' will be generated.
// the master branch of yolov3 should work, if not, you can checkout cf7a4d31d37788023a9186a1a143a2dab0275ead
- put yolov3.wts into tensorrtx/yolov3, build and run
mv yolov3.wts {tensorrtx}/yolov3/
cd {tensorrtx}/yolov3
mkdir build
cd build
cmake ..
make
sudo ./yolov3 -s // serialize model to plan file i.e. 'yolov3.engine'
sudo ./yolov3 -d ../../yolov3-spp/samples // deserialize plan file and run inference, the images in samples will be processed.
- check the images generated, as follows. _zidane.jpg and _bus.jpg
-
Prepare calibration images, you can randomly select 1000s images from your train set. For coco, you can also download my calibration images
coco_calib
from GoogleDrive or BaiduPan pwd: a9wh -
unzip it in yolov3/build
-
set the macro
USE_INT8
in yolov3.cpp and make -
serialize the model and test
See the readme in home page.