-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cv_multi_gpu.py
379 lines (334 loc) · 14.5 KB
/
train_cv_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import dgl.multiprocessing as mp
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
import tqdm
import traceback
import math
from dgl.data import RedditDataset
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
class SAGEConvWithCV(nn.Module):
def __init__(self, in_feats, out_feats, activation):
super().__init__()
self.W = nn.Linear(in_feats * 2, out_feats)
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
gain = nn.init.calculate_gain('relu')
nn.init.xavier_uniform_(self.W.weight, gain=gain)
nn.init.constant_(self.W.bias, 0)
def forward(self, block, H, HBar=None):
if self.training:
with block.local_scope():
H_src, H_dst = H
HBar_src, agg_HBar_dst = HBar
block.dstdata['agg_hbar'] = agg_HBar_dst
block.srcdata['hdelta'] = H_src - HBar_src
block.update_all(fn.copy_u('hdelta', 'm'), fn.mean('m', 'hdelta_new'))
h_neigh = block.dstdata['agg_hbar'] + block.dstdata['hdelta_new']
h = self.W(th.cat([H_dst, h_neigh], 1))
if self.activation is not None:
h = self.activation(h)
return h
else:
with block.local_scope():
H_src, H_dst = H
block.srcdata['h'] = H_src
block.update_all(fn.copy_u('h', 'm'), fn.mean('m', 'h_new'))
h_neigh = block.dstdata['h_new']
h = self.W(th.cat([H_dst, h_neigh], 1))
if self.activation is not None:
h = self.activation(h)
return h
class SAGE(nn.Module):
def __init__(self,
in_feats,
n_hidden,
n_classes,
n_layers,
activation):
super().__init__()
self.n_layers = n_layers
self.n_hidden = n_hidden
self.n_classes = n_classes
self.layers = nn.ModuleList()
self.layers.append(SAGEConvWithCV(in_feats, n_hidden, activation))
for i in range(1, n_layers - 1):
self.layers.append(SAGEConvWithCV(n_hidden, n_hidden, activation))
self.layers.append(SAGEConvWithCV(n_hidden, n_classes, None))
def forward(self, blocks):
h = blocks[0].srcdata['features']
updates = []
for layer, block in zip(self.layers, blocks):
# We need to first copy the representation of nodes on the RHS from the
# appropriate nodes on the LHS.
# Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
# would be (num_nodes_RHS, D)
h_dst = h[:block.number_of_dst_nodes()]
hbar_src = block.srcdata['hist']
agg_hbar_dst = block.dstdata['agg_hist']
# Then we compute the updated representation on the RHS.
# The shape of h now becomes (num_nodes_RHS, D)
h = layer(block, (h, h_dst), (hbar_src, agg_hbar_dst))
block.dstdata['h_new'] = h
return h
def inference(self, g, x, batch_size, device):
"""
Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
g : the entire graph.
x : the input of entire node set.
The inference code is written in a fashion that it could handle any number of nodes and
layers.
"""
# During inference with sampling, multi-layer blocks are very inefficient because
# lots of computations in the first few layers are repeated.
# Therefore, we compute the representation of all nodes layer by layer. The nodes
# on each layer are of course splitted in batches.
# TODO: can we standardize this?
nodes = th.arange(g.number_of_nodes())
for l, layer in enumerate(self.layers):
y = g.ndata['hist_%d' % (l + 1)]
for start in tqdm.trange(0, len(nodes), batch_size):
end = start + batch_size
batch_nodes = nodes[start:end]
block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes)
induced_nodes = block.srcdata[dgl.NID]
h = x[induced_nodes].to(device)
block = block.to(device)
h_dst = h[:block.number_of_dst_nodes()]
h = layer(block, (h, h_dst))
y[start:end] = h.cpu()
x = y
return y
class NeighborSampler(object):
def __init__(self, g, fanouts):
self.g = g
self.fanouts = fanouts
def sample_blocks(self, seeds):
seeds = th.LongTensor(seeds)
blocks = []
hist_blocks = []
for fanout in self.fanouts:
# For each seed node, sample ``fanout`` neighbors.
frontier = dgl.sampling.sample_neighbors(self.g, seeds, fanout)
# For history aggregation we sample all neighbors.
hist_frontier = dgl.in_subgraph(self.g, seeds)
# Then we compact the frontier into a bipartite graph for message passing.
block = dgl.to_block(frontier, seeds)
hist_block = dgl.to_block(hist_frontier, seeds)
# Obtain the seed nodes for next layer.
seeds = block.srcdata[dgl.NID]
blocks.insert(0, block)
hist_blocks.insert(0, hist_block)
return blocks, hist_blocks
def compute_acc(pred, labels):
"""
Compute the accuracy of prediction given the labels.
"""
return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)
def evaluate(model, g, labels, val_mask, batch_size, device):
"""
Evaluate the model on the validation set specified by ``val_mask``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
batch_size : Number of nodes to compute at the same time.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
inputs = g.ndata['features']
pred = model.inference(g, inputs, batch_size, device) # also recomputes history tensors
model.train()
return compute_acc(pred[val_mask], labels[val_mask])
def load_subtensor(g, labels, blocks, hist_blocks, dev_id, aggregation_on_device=False):
"""
Copys features and labels of a set of nodes onto GPU.
"""
blocks[0].srcdata['features'] = g.ndata['features'][blocks[0].srcdata[dgl.NID]]
blocks[-1].dstdata['label'] = labels[blocks[-1].dstdata[dgl.NID]]
ret_blocks = []
ret_hist_blocks = []
for i, (block, hist_block) in enumerate(zip(blocks, hist_blocks)):
hist_col = 'features' if i == 0 else 'hist_%d' % i
block.srcdata['hist'] = g.ndata[hist_col][block.srcdata[dgl.NID]]
# Aggregate history
hist_block.srcdata['hist'] = g.ndata[hist_col][hist_block.srcdata[dgl.NID]]
if aggregation_on_device:
hist_block = hist_block.to(dev_id)
hist_block.srcdata['hist'] = hist_block.srcdata['hist']
hist_block.update_all(fn.copy_u('hist', 'm'), fn.mean('m', 'agg_hist'))
block = block.to(dev_id)
if not aggregation_on_device:
hist_block = hist_block.to(dev_id)
block.dstdata['agg_hist'] = hist_block.dstdata['agg_hist']
ret_blocks.append(block)
ret_hist_blocks.append(hist_block)
return ret_blocks, ret_hist_blocks
def create_history_storage(g, args, n_classes):
# Initialize history storage
for l in range(args.num_layers):
dim = args.num_hidden if l != args.num_layers - 1 else n_classes
g.ndata['hist_%d' % (l + 1)] = th.zeros(g.number_of_nodes(), dim).share_memory_()
def init_history(g, model, dev_id, batch_size):
with th.no_grad():
model.inference(g, g.ndata['features'], batch_size, dev_id) # replaces hist_i features in-place
def update_history(g, blocks):
with th.no_grad():
for i, block in enumerate(blocks):
ids = block.dstdata[dgl.NID].cpu()
hist_col = 'hist_%d' % (i + 1)
h_new = block.dstdata['h_new'].cpu()
g.ndata[hist_col][ids] = h_new
def run(proc_id, n_gpus, args, devices, data):
dropout = 0.2
dev_id = devices[proc_id]
if n_gpus > 1:
dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
master_ip='127.0.0.1', master_port='12345')
world_size = n_gpus
th.distributed.init_process_group(backend="nccl",
init_method=dist_init_method,
world_size=world_size,
rank=proc_id)
th.cuda.set_device(dev_id)
# Unpack data
train_mask, val_mask, in_feats, labels, n_classes, g = data
train_nid = train_mask.nonzero().squeeze()
val_nid = val_mask.nonzero().squeeze()
# Create sampler
sampler = NeighborSampler(g, [int(_) for _ in args.fan_out.split(',')])
# Create PyTorch DataLoader for constructing blocks
if n_gpus > 1:
dist_sampler = th.utils.data.distributed.DistributedSampler(train_nid.numpy(), shuffle=True, drop_last=False)
dataloader = DataLoader(
dataset=train_nid.numpy(),
batch_size=args.batch_size,
collate_fn=sampler.sample_blocks,
sampler=dist_sampler,
num_workers=args.num_workers_per_gpu)
else:
dataloader = DataLoader(
dataset=train_nid.numpy(),
batch_size=args.batch_size,
collate_fn=sampler.sample_blocks,
shuffle=True,
drop_last=False,
num_workers=args.num_workers_per_gpu)
# Define model
model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu)
# Move the model to GPU and define optimizer
model = model.to(dev_id)
if n_gpus > 1:
model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
loss_fcn = nn.CrossEntropyLoss()
loss_fcn = loss_fcn.to(dev_id)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Compute history tensor and their aggregation before training on CPU
model.eval()
if n_gpus > 1:
if proc_id == 0:
init_history(g, model.module, dev_id, args.val_batch_size)
th.distributed.barrier()
else:
init_history(g, model, dev_id, args.val_batch_size)
model.train()
# Training loop
avg = 0
iter_tput = []
for epoch in range(args.num_epochs):
if n_gpus > 1:
dist_sampler.set_epoch(epoch)
tic = time.time()
model.train()
for step, (blocks, hist_blocks) in enumerate(dataloader):
if proc_id == 0:
tic_step = time.time()
# The nodes for input lies at the LHS side of the first block.
# The nodes for output lies at the RHS side of the last block.
seeds = blocks[-1].dstdata[dgl.NID]
blocks, hist_blocks = load_subtensor(g, labels, blocks, hist_blocks, dev_id, True)
# forward
batch_pred = model(blocks)
# update history
update_history(g, blocks)
# compute loss
batch_labels = blocks[-1].dstdata['label']
loss = loss_fcn(batch_pred, batch_labels)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
if proc_id == 0:
iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
if step % args.log_every == 0 and proc_id == 0:
acc = compute_acc(batch_pred, batch_labels)
print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f}'.format(
epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:])))
if n_gpus > 1:
th.distributed.barrier()
toc = time.time()
if proc_id == 0:
print('Epoch Time(s): {:.4f}'.format(toc - tic))
if epoch >= 5:
avg += toc - tic
if epoch % args.eval_every == 0 and epoch != 0:
model.eval()
eval_acc = evaluate(
model if n_gpus == 1 else model.module, g, labels, val_nid, args.val_batch_size, dev_id)
print('Eval Acc {:.4f}'.format(eval_acc))
if n_gpus > 1:
th.distributed.barrier()
if proc_id == 0:
print('Avg epoch time: {}'.format(avg / (epoch - 4)))
if __name__ == '__main__':
argparser = argparse.ArgumentParser("multi-gpu training")
argparser.add_argument('--gpu', type=str, default='0')
argparser.add_argument('--num-epochs', type=int, default=20)
argparser.add_argument('--num-hidden', type=int, default=16)
argparser.add_argument('--num-layers', type=int, default=2)
argparser.add_argument('--fan-out', type=str, default='1,1')
argparser.add_argument('--batch-size', type=int, default=1000)
argparser.add_argument('--val-batch-size', type=int, default=1000)
argparser.add_argument('--log-every', type=int, default=20)
argparser.add_argument('--eval-every', type=int, default=5)
argparser.add_argument('--lr', type=float, default=0.003)
argparser.add_argument('--num-workers-per-gpu', type=int, default=0)
args = argparser.parse_args()
devices = list(map(int, args.gpu.split(',')))
n_gpus = len(devices)
# load reddit data
data = RedditDataset(self_loop=True)
n_classes = data.num_classes
g = data[0]
features = g.ndata['feat']
in_feats = features.shape[1]
labels = g.ndata['label']
train_mask = g.ndata['train_mask']
val_mask = g.ndata['val_mask']
g.ndata['features'] = features.share_memory_()
create_history_storage(g, args, n_classes)
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
g.create_formats_()
# Pack data
data = train_mask, val_mask, in_feats, labels, n_classes, g
if n_gpus == 1:
run(0, n_gpus, args, devices, data)
else:
procs = []
for proc_id in range(n_gpus):
p = mp.Process(target=run, args=(proc_id, n_gpus, args, devices, data))
p.start()
procs.append(p)
for p in procs:
p.join()