-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
68 lines (59 loc) · 2.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import numpy as np
from train import train
from config import cfg
from config_test import cfg_test
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_integer("epoch", cfg.TRAIN.NUM_EPOCH,
"Epoch to train [15]") #n_epochs = cfg.TRAIN.NUM_EPOCH
flags.DEFINE_float("learning_rate_G", cfg.LEARNING_RATE_G,
"Learning rate for Generator of adam [0.0001]"
) #learning_rate_G = cfg.LEARNING_RATE_G
flags.DEFINE_float("learning_rate_D", cfg.LEARNING_RATE_D,
"Learning rate for Discriminator of adam [0.0001]"
) #learning_rate_D = cfg.LEARNING_RATE_D
flags.DEFINE_integer(
"batch_size", cfg.CONST.BATCH_SIZE,
"The size of batch voxels [100]") #batch_size = cfg.CONST.BATCH_SIZE
flags.DEFINE_integer(
"batch_size_test", cfg_test.CONST.BATCH_SIZE,
"The size of batch voxels [100]") #batch_size = cfg.CONST.BATCH_SIZE
flags.DEFINE_boolean("middle_start", False,
"True for starting from the middle [False]")
flags.DEFINE_integer(
"ini_epoch", 0,
"The number of initial epoch --if middle_start: False -> 0, True -> must assign the number [0]"
)
flags.DEFINE_string(
"mode", 'train',
"Execute mode: train/evaluate_recons/evaluate_interpolate/evaluate_noise")
flags.DEFINE_integer(
"conf_epoch", 10000,
"The number of confirmation epoch to evaluate interpolate, reconstruction etc [100]"
)
FLAGS = flags.FLAGS
def main():
if not os.path.exists(cfg.DIR.CHECK_POINT_PATH):
os.makedirs(cfg.DIR.CHECK_POINT_PATH)
if not os.path.exists(cfg.DIR.TRAIN_OBJ_PATH):
os.makedirs(cfg.DIR.TRAIN_OBJ_PATH)
if not os.path.exists(cfg.DIR.EVAL_PATH):
os.makedirs(cfg.DIR.EVAL_PATH)
if FLAGS.middle_start:
print 'middle_start'
if FLAGS.mode == 'train':
train(FLAGS.epoch, FLAGS.learning_rate_G, FLAGS.learning_rate_D,
FLAGS.batch_size, FLAGS.middle_start, FLAGS.ini_epoch)
elif FLAGS.mode == 'evaluate_recons' or 'evaluate_interpolate' or 'evaluate_noise':
from evaluate import evaluate
if FLAGS.mode == 'evaluate_recons':
mode = 'recons'
elif FLAGS.mode == 'evaluate_interpolate':
mode = 'interpolate'
else:
mode = 'noise'
evaluate(FLAGS.batch_size_test, FLAGS.conf_epoch, mode)
if __name__ == '__main__':
#tf.app.run()
main()