-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest.py
73 lines (55 loc) · 2.48 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
python script to evaluate the SSC model
---
Jie Li
Nanjing University of Science and Technology
Aug 25, 2019
"""
import os
import torch
import argparse
import datetime
from dataloaders import make_data_loader
from models import make_model
from main import validate_on_dataset_stsdf
import config
parser = argparse.ArgumentParser(description='PyTorch SSC Training')
parser.add_argument('--dataset', type=str, default='nyu', choices=['nyu', 'nyucad', 'debug'],
help='dataset name (default: nyu)')
parser.add_argument('--model', type=str, default='ddrnet', choices=['ddrnet', 'aicnet', 'grfnet', 'palnet', 'lwddrnet'],
help='model name (default: palnet)')
parser.add_argument('--batch_size', default=4, type=int, metavar='N', help='mini-batch size (default: 4)')
parser.add_argument('--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)')
parser.add_argument('--resume', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
global args
args = parser.parse_args()
def main():
# ---- Check CUDA
if torch.cuda.is_available():
print("Great, You have {} CUDA device!".format(torch.cuda.device_count()))
else:
print("Sorry, You DO NOT have a CUDA device!")
train_time_start = datetime.datetime.now()
test()
print('Training finished in: {}'.format(datetime.datetime.now() - train_time_start))
def test():
# ---- create model ---------- ---------- ---------- ---------- ----------#
net = make_model(args.model, num_classes=12).cuda()
net = torch.nn.DataParallel(net) # Multi-GPU
# ---- load pretrained model --------- ---------- ----------#
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
cp_states = torch.load(args.resume)
net.load_state_dict(cp_states['state_dict'], strict=True)
else:
raise Exception("=> NO checkpoint found at '{}'".format(args.resume))
# ---- Data loader
train_loader, val_loader = make_data_loader(args)
torch.cuda.empty_cache()
# ---- Evaluation
v_prec, v_recall, v_iou, v_acc, v_ssc_iou, v_mean_iou = validate_on_dataset_stsdf(net, val_loader)
print('Validate with TSDF:, p {:.1f}, r {:.1f}, IoU {:.1f}'.format(v_prec*100.0, v_recall*100.0, v_iou*100.0))
print('pixel-acc {:.4f}, mean IoU {:.1f}, SSC IoU:{}'.format(v_acc*100.0, v_mean_iou*100.0, v_ssc_iou*100.0))