-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnext_prime.py
168 lines (146 loc) · 3.46 KB
/
next_prime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# borrowed from primo's excellent codegolf post: http://codegolf.stackexchange.com/a/10702/41268
# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
return pow(a, (m-1) >> 1, m)
# strong probable prime
def is_sprp(n, b=2):
d = n-1
s = 0
while d&1 == 0:
s += 1
d >>= 1
x = pow(b, d, n)
if x == 1 or x == n-1:
return True
for r in range(1, s):
x = (x * x)%n
if x == 1:
return False
elif x == n-1:
return True
return False
# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
P = 1
Q = (1-D) >> 2
# n+1 = 2**r*s where s is odd
s = n+1
r = 0
while s&1 == 0:
r += 1
s >>= 1
# calculate the bit reversal of (odd) s
# e.g. 19 (10011) <=> 25 (11001)
t = 0
while s > 0:
if s&1:
t += 1
s -= 1
else:
t <<= 1
s >>= 1
# use the same bit reversal process to calculate the sth Lucas number
# keep track of q = Q**n as we go
U = 0
V = 2
q = 1
# mod_inv(2, n)
inv_2 = (n+1) >> 1
while t > 0:
if t&1 == 1:
# U, V of n+1
U, V = ((U + V) * inv_2)%n, ((D*U + V) * inv_2)%n
q = (q * Q)%n
t -= 1
else:
# U, V of n*2
U, V = (U * V)%n, (V * V - 2 * q)%n
q = (q * q)%n
t >>= 1
# double s until we have the 2**r*sth Lucas number
while r > 0:
U, V = (U * V)%n, (V * V - 2 * q)%n
q = (q * q)%n
r -= 1
# primality check
# if n is prime, n divides the n+1st Lucas number, given the assumptions
return U == 0
# primes less than 212
small_primes = set([
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97,101,103,107,109,113,
127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211])
# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
1, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97,101,103,107,109,113,121,127,131,
137,139,143,149,151,157,163,167,169,173,
179,181,187,191,193,197,199,209]
# distances between sieve values
offsets = [
10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]
max_int = 2147483647
# an 'almost certain' primality check
def is_prime(n):
if n < 212:
return n in small_primes
for p in small_primes:
if n%p == 0:
return False
# if n is a 32-bit integer, perform full trial division
if n <= max_int:
i = 211
while i*i < n:
for o in offsets:
i += o
if n%i == 0:
return False
return True
# Baillie-PSW
# this is technically a probabalistic test, but there are no known pseudoprimes
if not is_sprp(n): return False
a = 5
s = 2
while legendre(a, n) != n-1:
s = -s
a = s-a
return is_lucas_prp(n, a)
# next prime strictly larger than n
def next_prime(n):
if n < 2:
return 2
# first odd larger than n
n = (n + 1) | 1
if n < 212:
while True:
if n in small_primes:
return n
n += 2
# find our position in the sieve rotation via binary search
x = int(n%210)
s = 0
e = 47
m = 24
while m != e:
if indices[m] < x:
s = m
m = (s + e + 1) >> 1
else:
e = m
m = (s + e) >> 1
i = int(n + (indices[m] - x))
# adjust offsets
offs = offsets[m:]+offsets[:m]
while True:
for o in offs:
if is_prime(i):
return i
i += o