-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
62 lines (51 loc) · 2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 17 14:38:35 2020
@author: Shenghuan Miao
"""
from __future__ import print_function
import argparse
import torch
from solver import Solver
import os
import warnings
warnings.filterwarnings("ignore")
#
# Training settings
parser = argparse.ArgumentParser(description='PyTorch SALIENCE Implementation')
parser.add_argument('--dataset', type=str, default='opp', metavar='N',
help='opp or pamap')
parser.add_argument('--lr', type=float, default=0.0005, metavar='LR',
help='learning rate (default: 0.0001 for opp, 0.0005 for pamap)')
parser.add_argument('--max_epoch', type=int, default=100, metavar='N',
help='how many epochs')
parser.add_argument('--test_user', type=int, default=0, metavar='N',
help='user for test')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--ex_num', type=int, default=1, metavar='N',
help='the number of experiments')
parser.add_argument('--optimizer', type=str, default='adam', metavar='N', help='which optimizer')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
print(args)
def main():
if args.dataset == 'opp':
num_users = 4
else:
num_users = 8
for i in range(1):
for s in range(num_users):
args.test_user = s
args.ex_num = i
solver = Solver(args)
solver.train(args.max_epoch)
if __name__ == '__main__':
main()