-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
126 lines (96 loc) · 3.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import argparse
import random
import numpy as np
import lavis.tasks as tasks
import torch
import torch.backends.cudnn as cudnn
from lavis.common.config import Config
from lavis.common.dist_utils import get_rank, init_distributed_mode
from lavis.common.logger import setup_logger
from lavis.common.registry import registry
from lavis.common.utils import now
from lavis.datasets.datasets.omnicaption_dataset import create_dataset
from lavis.datasets.datasets.omnicaption_clip_dataset import create_clip_dataset
from lavis.datasets.datasets.omnisot_dataset import create_sot_dataset
from lavis.models import *
from lavis.processors import *
from lavis.runners import *
from lavis.tasks import *
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument(
"--cfg-path", required=True, help="path to configuration file."
)
parser.add_argument("--auto_resume", action="store_true")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def get_runner_class(cfg):
"""
Get runner class from config. Default to epoch-based runner.
"""
runner_cls = registry.get_runner_class(
cfg.run_cfg.get("runner", "runner_base")
)
return runner_cls
def main():
# allow auto-dl completes on main process without timeout when using NCCL backend.
# os.environ["NCCL_BLOCKING_WAIT"] = "1"
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
args = parse_args()
cfg = Config(args)
init_distributed_mode(cfg.run_cfg)
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
setup_logger()
task = tasks.setup_task(cfg)
if "sot" in cfg.run_cfg.evaluate_type:
datasets = create_sot_dataset(cfg)
elif cfg.run_cfg.evaluation_type in ["ar_k400", "qa_msrvtt", "cc_msrvtt"]:
datasets = create_clip_dataset(cfg)
elif cfg.run_cfg.cfg.evaluation_type == "dvp_anet":
datasets = create_dataset(cfg)
else:
raise NotImplementedError
if hasattr(datasets["train"][0], "tokenize"):
vocab_size = len(datasets["train"][0].tokenize.tokenizer)
tokenizer = datasets["train"][0].tokenize
else:
vocab_size = 0
tokenizer = None
# print("VOCAB SIZE: ", vocab_size)
cfg.model_cfg.vocab_size = vocab_size
model = task.build_model(cfg)
model.set_tokenizer(tokenizer)
runner = get_runner_class(cfg)(
cfg=cfg,
task=task,
model=model,
datasets=datasets,
auto_resume=args.auto_resume,
)
runner.train()
if __name__ == "__main__":
# torch.multiprocessing.set_start_method("spawn")
main()