-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpop_fission.cu
258 lines (208 loc) · 8.54 KB
/
pop_fission.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#include <cuda.h>
#include <stdio.h>
#include "datadef.h"
#include "warp_device.cuh"
#include "check_cuda.h"
__global__ void pop_fission_kernel(unsigned N, cross_section_data* d_xsdata, particle_data* d_particles, unsigned* d_scanned, spatial_data* fission_particles, float* fission_energy){
// get tid
int tid = threadIdx.x+blockIdx.x*blockDim.x;
// declare shared variables
__shared__ unsigned n_isotopes;
__shared__ unsigned energy_grid_len;
__shared__ unsigned total_reaction_channels;
__shared__ float* energy_grid;
__shared__ dist_container* dist_scatter;
__shared__ dist_container* dist_energy;
__shared__ spatial_data* space;
__shared__ float* E;
__shared__ unsigned* rn_bank;
__shared__ unsigned* yield;
__shared__ unsigned* index;
// have thread 0 of block copy all pointers and static info into shared memory
if (threadIdx.x == 0){
n_isotopes = d_xsdata[0].n_isotopes;
energy_grid_len = d_xsdata[0].energy_grid_len;
total_reaction_channels = d_xsdata[0].total_reaction_channels;
energy_grid = d_xsdata[0].energy_grid;
dist_scatter = d_xsdata[0].dist_scatter;
dist_energy = d_xsdata[0].dist_energy;
space = d_particles[0].space;
E = d_particles[0].E;
rn_bank = d_particles[0].rn_bank;
yield = d_particles[0].yield;
index = d_particles[0].index;
}
// make sure shared loads happen before anything else (epecially returns)
__syncthreads();
// load history data
unsigned this_dex = index[ tid];
float this_E = E[ tid];
unsigned this_yield = yield[ tid];
unsigned rn = rn_bank[ tid];
float this_x = space[ tid].x;
float this_y = space[ tid].y;
float this_z = space[ tid].z;
// get array position from prefix scan
unsigned position = d_scanned[tid];
// make sure individual loads happen before anything else?
__syncthreads();
// return immediately if out of bounds
if (tid >= N){return;}
// check yield
if (this_yield==0){
return;
}
// another yield check
if((d_scanned[tid+1]-d_scanned[tid]) == 0){
printf("NOT RIGHT! \n");
return;
}
// check E data pointers
if(dist_energy == 0x0){
printf("null pointer, energy array in continuum scatter!,tid %u\n",tid);
return;
}
//constants
const float pi = 3.14159265359;
// internal kernel variables
float nu_t0 = 0.0;
float nu_t1 = 0.0;
float nu_d0 = 0.0;
float nu_d1 = 0.0;
float beta = 0.0;
float e0 = 0.0;
float e1 = 0.0;
unsigned data_dex = 0;
float sampled_E = 0.0;
float phi, mu, E0, f, rn1;
unsigned this_law, this_len, this_intt, upper_len, lower_len, pre_index, pre_position;
float *this_var, *this_cdf, *this_pdf, *upper_var, *lower_var;
unsigned n_columns = n_isotopes + total_reaction_channels;
unsigned this_col = this_dex % n_columns;
unsigned this_row = (this_dex-this_col) / n_columns;
float E_of_index0 = energy_grid[this_row];
float E_of_index1 = energy_grid[this_row+1];
if(this_E < E_of_index0 | this_E > E_of_index1){printf("this %6.4E row %6.4E row+1 %6.4E \n",this_E,E_of_index0,E_of_index1);}
// load dist info
dist_data this_edist, this_sdist;
dist_data sdist_lower = dist_scatter[this_dex].lower[0];
dist_data sdist_upper = dist_scatter[this_dex].upper[0];
dist_data edist_lower = dist_energy[ this_dex].lower[0];
dist_data edist_upper = dist_energy[ this_dex].upper[0];
// copy nu values, energy points from dist, t is len, d is law
memcpy(&nu_t0 , &sdist_lower.len, 1*sizeof(float));
memcpy(&nu_t1 , &sdist_upper.len, 1*sizeof(float));
memcpy(&nu_d0 , &sdist_lower.law, 1*sizeof(float));
memcpy(&nu_d1 , &sdist_upper.law, 1*sizeof(float));
memcpy(&e0 , &sdist_lower.erg, 1*sizeof(float));
memcpy(&e1 , &sdist_upper.erg, 1*sizeof(float));
// get interpolated beta value, beta = nu_d / nu_t
beta = interpolate_linear_energy( this_E, e0, e1, nu_d0, nu_d1 ) /
interpolate_linear_energy( this_E, e0, e1, nu_t0, nu_t1 );
printf("beta % 6.4E this_E % 6.4E e0 % 6.4E e1 % 6.4E nu_d0 % 6.4E nu_d1 % 6.4E nu_t0 % 6.4E nu_t1 % 6.4E\n",beta,this_E, e0, e1, nu_d0, nu_d1, nu_t0, nu_t1);
// write new histories for this yield number
for(unsigned k=0 ; k < this_yield ; k++ ){
//get proper data index
data_dex = position+k;
// check if this neutron is delayed or prompt
if ( get_rand(&rn) > beta ){
// do individual stochastic mixing for this prompt neutron
// pick upper or lower edist via stochastic mixing
f = (this_E - edist_lower.erg) / (edist_upper.erg - edist_lower.erg);
if( get_rand(&rn) > f ){
this_edist = edist_lower;
}
else{
this_edist = edist_upper;
}
// set pointers and parameters
this_law = this_edist.law;
this_len = this_edist.len;
this_intt = this_edist.intt;
this_var = this_edist.var;
this_cdf = this_edist.cdf;
this_pdf = this_edist.pdf;
upper_var = edist_upper.var;
lower_var = edist_lower.var;
upper_len = edist_upper.len;
lower_len = edist_lower.len;
}
else{
// pick upper or lower sdist (contains the delayed data) via stochastic mixing
f = 0.0;//(this_E - sdist_lower.var[0]) / (sdist_upper.erg - sdist_lower.erg);
if( get_rand(&rn) > f ){
this_sdist = sdist_lower;
}
else{
this_sdist = sdist_upper;
}
// decode precursor intt, 100 place
this_intt = (this_sdist.intt%1000-this_sdist.intt%100)/100;
// decode precursor law, 1000 place
this_law = (this_sdist.intt%10000-this_sdist.intt%1000)/1000;
// sample which precursor neutron is from
rn1 = get_rand(&rn);
for( pre_index=0; pre_index<6; pre_index++ ){
if ( rn1 <= this_sdist.var[pre_index+1] ){
break;
}
}
// get position of data in vector and vector length
pre_position = (unsigned) this_sdist.pdf[pre_index]; // haha preposition...
this_len = (unsigned) this_sdist.pdf[pre_index+1] - (unsigned) this_sdist.pdf[pre_index];
// get pointers to sampled data
this_var = &this_sdist.cdf[pre_position];
this_cdf = &this_sdist.cdf[pre_position + ((unsigned)this_sdist.pdf[6]) ]; // last value in cdf if the total length of the combined 6-vectors
this_pdf = &this_sdist.cdf[pre_position + ((unsigned)this_sdist.pdf[6])*2 ];
upper_var = &this_sdist.cdf[pre_position];
lower_var = &this_sdist.cdf[pre_position];
upper_len = this_len;
lower_len = this_len;
printf("DELAYED this_E %6.4E f %6.4E pre_index %u pre_position %u this_len %u this_var[0] %6.4E this_cdf[0] %6.4E this_pdf[0] %6.4E\n",this_E,f,pre_index,pre_position,this_len,this_var[0],this_cdf[0],this_pdf[0]);
}
// sample dist, passing the parameters/pointers to the sampled delayed/prompt emission data
if (this_law ==4 ){
// sample continuous tabular
E0 = sample_continuous_tablular( this_len ,
this_intt ,
get_rand(&rn) ,
this_var ,
this_cdf,
this_pdf );
//scale it to bins
sampled_E = scale_to_bins( f, E0,
this_var[0], this_var[ this_len-1],
lower_var[0], lower_var[lower_len-1],
upper_var[0], upper_var[upper_len-1] );
// check errors
if (!isfinite(sampled_E) | sampled_E<=0.0){
printf("Fission pop mis-sampled tid %i data_dex %u E %6.4E... setting to 2.5\n",tid,data_dex,sampled_E);
sampled_E = 2.5;
}
// sample mu/phi isotropically
mu = 2.0*get_rand(&rn)-1.0;
phi = 2.0*pi*get_rand(&rn);
}
else{
printf("LAW %u NOT HANDLED IN FISSION POP!\n",this_law);
}
// set data in temp array since GRID-WISE threadsync cannot be done (easily?)!
fission_energy[ data_dex ] = sampled_E;
fission_particles[ data_dex ].x = this_x;
fission_particles[ data_dex ].y = this_y;
fission_particles[ data_dex ].z = this_z;
fission_particles[ data_dex ].xhat = sqrtf(1.0-(mu*mu))*cosf(phi);
fission_particles[ data_dex ].yhat = sqrtf(1.0-(mu*mu))*sinf(phi);
fission_particles[ data_dex ].zhat = mu;
fission_particles[ data_dex ].enforce_BC = 0;
fission_particles[ data_dex ].surf_dist = 999999.0;
//if(data_dex<=9){printf("array index %u, E = % 6.4E d_fissile_energy[ data_dex ] = % 6.4E\n",data_dex,sampled_E,E[ data_dex ]);}
}
// write current seed out
rn_bank[tid] = rn;
}
void pop_fission( unsigned NUM_THREADS, unsigned N, cross_section_data* d_xsdata, particle_data* d_particles, unsigned* d_scanned, spatial_data* fission_particles, float* fission_energy ){
unsigned blks = ( N + NUM_THREADS - 1 ) / NUM_THREADS;
pop_fission_kernel <<< blks, NUM_THREADS >>> ( N, d_xsdata, d_particles, d_scanned, fission_particles, fission_energy);
check_cuda(cudaThreadSynchronize());
}