-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathopt.py
80 lines (71 loc) · 4.14 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import argparse
from pprint import pprint
from utils import log
import sys
class Options:
def __init__(self):
self.parser = argparse.ArgumentParser()
self.opt = None
def _initial(self):
# ===============================================================
# General options
# ===============================================================
# self.parser.add_argument('--data_dir', type=str,
# default='/home/wei/Documents/',
# help='path to dataset')
self.parser.add_argument('--exp', type=str, default='test', help='ID of experiment')
self.parser.add_argument('--is_eval', dest='is_eval', action='store_true',
help='whether it is to evaluate the model')
self.parser.add_argument('--ckpt', type=str, default='checkpoint/', help='path to save checkpoint')
self.parser.add_argument('--skip_rate', type=int, default=5, help='skip rate of samples')
self.parser.add_argument('--skip_rate_test', type=int, default=5, help='skip rate of samples for test')
# ===============================================================
# Model options
# ===============================================================
# self.parser.add_argument('--input_size', type=int, default=2048, help='the input size of the neural net')
# self.parser.add_argument('--output_size', type=int, default=85, help='the output size of the neural net')
self.parser.add_argument('--in_features', type=int, default=54, help='size of each model layer')
self.parser.add_argument('--num_stage', type=int, default=12, help='size of each model layer')
self.parser.add_argument('--d_model', type=int, default=256, help='past frame number')
self.parser.add_argument('--kernel_size', type=int, default=5, help='past frame number')
# self.parser.add_argument('--drop_out', type=float, default=0.5, help='drop out probability')
# ===============================================================
# Running options
# ===============================================================
self.parser.add_argument('--input_n', type=int, default=50, help='past frame number')
self.parser.add_argument('--output_n', type=int, default=25, help='future frame number')
self.parser.add_argument('--dct_n', type=int, default=10, help='future frame number')
self.parser.add_argument('--lr_now', type=float, default=0.0005)
self.parser.add_argument('--max_norm', type=float, default=10000)
self.parser.add_argument('--epoch', type=int, default=50)
self.parser.add_argument('--batch_size', type=int, default=32)
self.parser.add_argument('--test_batch_size', type=int, default=16)
self.parser.add_argument('--is_load', dest='is_load', action='store_true',
help='whether to load existing model')
def _print(self):
print("\n==================Options=================")
pprint(vars(self.opt), indent=4)
print("==========================================\n")
def parse(self):
self._initial()
self.opt = self.parser.parse_args()
if not self.opt.is_eval:
script_name = os.path.basename(sys.argv[0])[:-3]
log_name = '{}_in{}_out{}_ks{}_dctn{}'.format(script_name, self.opt.input_n,
self.opt.output_n,
self.opt.kernel_size,
self.opt.dct_n)
self.opt.exp = log_name
# do some pre-check
ckpt = os.path.join(self.opt.ckpt, self.opt.exp)
if not os.path.isdir(ckpt):
os.makedirs(ckpt)
log.save_options(self.opt)
self.opt.ckpt = ckpt
log.save_options(self.opt)
self._print()
# log.save_options(self.opt)
return self.opt