-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate_multimodal_index.py
127 lines (107 loc) · 4.74 KB
/
generate_multimodal_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import sys
import math
import pickle
import argparse
import time
from torch import optim
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
import io
import torch.distributions as D
sys.path.append(os.getcwd())
from utils import *
from motion_pred.utils.config import Config
from motion_pred.utils.dataset_h36m import DatasetH36M
from motion_pred.utils.dataset_humaneva import DatasetHumanEva
# from models.motion_pred import *
# from models.motion_pred_naf import *
from utils import util
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--sub', default='S1')
parser.add_argument('--act', default='Walking')
args = parser.parse_args()
"""data"""
dataset = 'h36m'
dataset_cls = DatasetH36M if dataset == 'h36m' else DatasetHumanEva
dataset = dataset_cls('train', 0, 1, actions='all', use_vel=False)
dataset_test = dataset_cls('test', 0, 1, actions='all', use_vel=False)
data = dataset.data
t_his = 25
t_pre = 100
parents = dataset.skeleton.parents()
margin_f = 1
thre_his = 0.05
thre_pred = 0.1
st = time.time()
# get all possible sequences
skip_rate = 20
data_candidate = []
for sub in dataset.subjects:
for key in data[sub].keys():
data_tmp = np.copy(data[sub][key])
data_tmp[:, 0] = 0
nf = data_tmp.shape[0]
idxs = np.arange(0, nf - t_his - t_pre, skip_rate)[:, None] + np.arange(t_his + t_pre)[None, :]
data_tmp = data_tmp[idxs]
# validation
data_tmp1 = util.absolute2relative(data_tmp, parents=parents)
# data_tmp2 = util.absolute2relative(data_tmp1, parents=parents, invert=True, x0=data_tmp[:1, :1])
# print(f'recovery error {np.max(np.abs(data_tmp2 - data_tmp)):.3f}')
# data_tmp = util.absolute2relative(data_tmp, parents=parents)
data_candidate.append(data_tmp1)
data_candidate = np.concatenate(data_candidate, axis=0)
np.savez_compressed(f'data_multimodal_t_his{t_his:d}_t_pred{t_pre:d}_skiprate{skip_rate}.npz',
data_candidate=data_candidate)
data_candidate = np.load(f'data_multimodal_t_his{t_his:d}_t_pred{t_pre:d}_skiprate{skip_rate}.npz')[
'data_candidate']
# data_candidate = \
# np.load('./data/data_multi_modal/data_candi_t_his25_t_pred100_skiprate20.npz', allow_pickle=True)[
# 'data_candidate.npy']
data_multimodal = {}
for sub in dataset.subjects:
data_sub = {}
if sub not in args.sub:
continue
for key in data[sub].keys():
# if str.lower(args.act) not in str.lower(key):
# continue
st = time.time()
data_key = {}
data_tmp = np.copy(data[sub][key])
data_tmp[:, 0] = 0
nf = data_tmp.shape[0]
candi_tmp = util.absolute2relative(data_candidate, parents=parents, invert=True,
x0=data_tmp[None, ...][:, :1])
idxs = np.arange(0, nf - t_his - t_pre + 1)[:, None] + np.arange(t_his + t_pre)[None, :]
# observation distance
dist_his = np.mean(np.linalg.norm(data_tmp[idxs][:, t_his - margin_f:t_his, 1:][:, None, ...] -
candi_tmp[:, t_his - margin_f:t_his, 1:][None, ...], axis=4),
axis=(2, 3))
for idx in np.arange(0, nf - t_his - t_pre + 1):
dist_h = dist_his[idx]
# dist_p = dist_pred[idx]
idx_his = np.where(dist_h <= thre_his)[0]
candi_tmp_tmp = candi_tmp[idx_his]
traj = data_tmp[idx:idx + t_his + t_pre]
x0 = np.copy(traj[None, ...])
x0[:, :, 0] = 0
# future distance
dist_pred = np.mean(np.linalg.norm(x0[:, t_his:, 1:] -
candi_tmp_tmp[:, t_his:, 1:], axis=3), axis=(1, 2))
idx_pred = np.where(dist_pred >= thre_pred)[0]
idx_cand = idx_his[idx_pred]
# traj_multi = candi_tmp_tmp[idx_pred]
data_key[idx] = idx_cand
# data_key[f'{idx}_dist_his'] = dist_h[idx_his[idx_pred]]
# data_key[f'{idx}_dist_pred'] = dist_pred[idx_pred]
data_sub[key] = data_key
print(f'>>> time used for {sub}_{key}: {time.time() - st:.3f}')
# break
data_multimodal[sub] = data_sub
# break
np.savez_compressed(
f'./data/data_multi_modal/t_his{t_his:d}_{margin_f:d}_thre{thre_his:.3f}_t_pred{t_pre:d}_thre{thre_pred:.3f}_index_sub{args.sub}.npz',
data_multimodal=data_multimodal)
# print(1)