-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_ti.py
219 lines (170 loc) · 8.94 KB
/
extract_ti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/python3
import argparse
import beav_oncogenes
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
def get_base_file_name(file_name):
"""
INPUT: Input GenBank file name or path to the file
OUTPUT: Base name
"""
if '/' in file_name:
file_name = file_name.split('/')[-1]
if '.' in file_name:
file_name = file_name.split('.')[0]
return file_name
def get_feature_seq(feature, gbk_record, seq_class, CDS=True):
'''
Input:
feature: A GenBank sequence feature of interest
gbk_record: A GenBank record
seq_class: Type of sequence feature extracting (i.e. T-DNA etc.)
CDS: If it is a CDS feature or not.
Output: A description, NA and AA sequences extracted from the record for that feature
'''
contig = gbk_record.id
na_seq = feature.location.extract(gbk_record).seq
# Get feature locatin
if feature.strand == -1:
start = int(feature.location.parts[-1].start)
end = int(feature.location.parts[0].end)
strand = '-'
else:
start = int(feature.location.parts[0].start)
end = int(feature.location.parts[-1].end)
strand = '+'
# Get amino acid sequence and sequence ID
if CDS != False:
aa_seq = na_seq.translate(stop_symbol='')
seq_id = feature.qualifiers['locus_tag'][0]
if 'gene' in feature.qualifiers.keys():
gene_id = feature.qualifiers['gene'][0]
else:
gene_id = feature.qualifiers['product'][0]
else:
seq_id = 'None'
aa_seq = 'NA'
gene_id = 'NA'
return (seq_class, contig, seq_id, gene_id, start, end, strand, na_seq, aa_seq)
def extract_ti_features(gbk_file):
'''
Input: GenBank file
Output: List containing corresponding feature sequences and other necessary info
'''
feature_list = []
for gbk_record in SeqIO.parse(gbk_file, "genbank"):
for feature in gbk_record.features:
if feature.type == "CDS":
if 'gene' in feature.qualifiers.keys():
if feature.qualifiers['gene'][0] in beav_oncogenes.vir_dict.keys():
feature_list.append(get_feature_seq(feature, gbk_record, 'T-DNA Transfer')) #T-DNA transfer
elif feature.qualifiers['gene'][0] in beav_oncogenes.oncogene_dict.keys():
feature_list.append(get_feature_seq(feature, gbk_record, 'T-DNA')) #T-DNA/Oncogene
elif feature.qualifiers['gene'][0] in beav_oncogenes.rep_dict.keys():
feature_list.append(get_feature_seq(feature, gbk_record, 'repABC')) #repABC
elif feature.qualifiers['gene'][0] in beav_oncogenes.opine_synth_dict.keys():
feature_list.append(get_feature_seq(feature, gbk_record, 'Opine synthase')) #Opine synthase genes
elif feature.qualifiers['gene'][0] in beav_oncogenes.opine_tracat_dict.keys():
feature_list.append(get_feature_seq(feature, gbk_record, 'Opine transport/catabolism')) #Opine transport/catabolism genes
elif feature.qualifiers['gene'][0] in beav_oncogenes.agrocinopine_dict.keys():
feature_list.append(get_feature_seq(feature, gbk_record, 'Agrocinopine transport/catabolism')) #Agrocinopine transport/catabolism genes
else:
if feature.qualifiers['product'][0] in beav_oncogenes.oncogene_list:
feature_list.append(get_feature_seq(feature, gbk_record, 'T-DNA')) #T-DNA/Oncogene
elif feature.qualifiers['product'][0] in beav_oncogenes.rep_dict.values():
feature_list.append(get_feature_seq(feature, gbk_record, 'repABC')) #repABC
elif feature.qualifiers['product'][0] in beav_oncogenes.opine_synth_dict.values():
feature_list.append(get_feature_seq(feature, gbk_record, 'Opine synthase')) #Opine synthase genes
elif feature.qualifiers['product'][0] in beav_oncogenes.opine_tracat_dict.values():
feature_list.append(get_feature_seq(feature, gbk_record, 'Opine transport/catabolism')) #Opine transport/catabolism genes
elif feature.qualifiers['product'][0] in beav_oncogenes.agrocinopine_dict.values():
feature_list.append(get_feature_seq(feature, gbk_record, 'Agrocinopine transport/catabolism')) #Agrocinopine transport/catabolism genes
else:
if 'note' in feature.qualifiers.keys():
if 'origin_of_replication' in ' '.join(feature.qualifiers['note']):
feature_list.append(get_feature_seq(feature, gbk_record, 'Origin of replication', CDS=False)) # Origin of replication
elif 'virbox' in ' '.join(feature.qualifiers['note']):
feature_list.append(get_feature_seq(feature, gbk_record, 'virbox', CDS=False)) # virbox
elif 'trabox' in ' '.join(feature.qualifiers['note']):
feature_list.append(get_feature_seq(feature, gbk_record, 'trabox', CDS=False)) # trabox
elif 'T-DNA_right_border' in ' '.join(feature.qualifiers['note']):
feature_list.append(get_feature_seq(feature, gbk_record, 'T-DNA right border', CDS=False)) # t-dna right border
elif 'T-DNA_left_border' in feature.qualifiers['note']:
feature_list.append(get_feature_seq(feature, gbk_record, 'T-DNA left border', CDS=False)) # t-dna left border
return feature_list
def make_SeqRecord(feature_entry, seq_type='NA'):
'''
Input: Single list containing feature and sequences
Output: A SeqRecord object
'''
if seq_type == 'NA':
seq = feature_entry[7] # NA seq record
elif seq_type == 'AA':
seq = feature_entry[8] # AA seq record
seq_record = SeqRecord(
seq, # NA Seq Object
id = '', # Locus Tag
description = f"id={feature_entry[2]} | contig={feature_entry[1]} | type={feature_entry[0]} | gene={feature_entry[3]} | start={feature_entry[4]} | end={feature_entry[5]} | strand={feature_entry[6]}"
)
return seq_record
def make_ti_genes_fasta(feature_list, input):
'''
Input: List containing features and sequences from different contigs/GenBank records
Output: Write fasta file containing NA and AA sequences
'''
na_seqs = []
aa_seqs = []
for f in feature_list:
if f[2] != 'None':
na_seqs.append(make_SeqRecord(f, 'NA'))
aa_seqs.append(make_SeqRecord(f, 'AA'))
SeqIO.write(na_seqs, f"{get_base_file_name(input)}.ti_genes.ffn", 'fasta')
SeqIO.write(aa_seqs, f"{get_base_file_name(input)}.ti_genes.faa", 'fasta')
return f"Ti genes extracted and written in: {get_base_file_name(input)}.ti_genes.ffn/fna files"
def make_gff3(features_list, input):
'''
Input: Feature list from get_feature_seq function
Output: GFF3 summarizing which contig has which genes
'''
with open(f"{get_base_file_name(input)}.ti_genes.gff3", 'w') as gff:
gff.writelines('##gff-version 3\n')
for f in features_list:
if f[2] != 'None':
f_type = 'CDS'
else:
f_type = 'misc'
# gff columns: seqid, source, type, start, end, score, strand, phase, attributes
line = f"{f[1]}\tBEAV\t{f_type}\t{f[4]}\t{f[5]}\t.\t{f[6]}\t.\ttype={f[0]};locus_tag={f[2]};gene={f[3]}"
gff.writelines(f"{line}\n")
return f'Ti gene extraction summary written in: {get_base_file_name(input)}.ti_genes.gff3'
def extract_ti_plasmid(gbk_file, contiglist):
'''
Output: GenBank file containing ti plasmid contig(s)
'''
# Find the contigs that contain Ti Plasmid
with open(contiglist, 'r') as f:
raw = f.readlines()
contigs = [i.split()[0] for i in raw]
# Filter beav gbk file to have only oncogenic contigs
records = []
for gbk_record in SeqIO.parse(gbk_file, "genbank"):
if gbk_record.id in contigs:
records.append(gbk_record)
# Write oncogenic plasmid record
SeqIO.write(records, f"{get_base_file_name(gbk_file)}.ti_plasmid.gbk", 'genbank')
return f"Ti plasmid extracted and saved in: {get_base_file_name(gbk_file)}.ti_plasmid.gbk"
def main():
# Define CLI parser argument
parser = argparse.ArgumentParser()
parser.add_argument('--input', '-i', type=str, required=True)
parser.add_argument('--contiglist', type=str, required=True)
# Parse the arguments
args = parser.parse_args()
# Extract Ti associated genes and write to fna/faa/gff3 files
ti_features = extract_ti_features(args.input)
print(make_ti_genes_fasta(ti_features, args.input))
print(make_gff3(ti_features, args.input))
# Extract whole ti contigs
print(extract_ti_plasmid(args.input, args.contiglist))
if __name__ == "__main__":
main()