-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmake_dataset.py
42 lines (37 loc) · 1.42 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import h5py
import PIL.Image as Image
import numpy as np
import os
import glob
from matplotlib import pyplot as plt
from scipy.ndimage.filters import gaussian_filter
import json
from image import *
#set the root to the path of FDST dataset you download
root = ''
#now generate the FDST's ground truth
train_folder = os.path.join(root,'train_data')
test_folder = os.path.join(root,'test_data')
path_sets = [os.path.join(train_folder,f) for f in os.listdir(train_folder) if os.path.isdir(os.path.join(train_folder,f))]+[os.path.join(test_folder,f) for f in os.listdir(test_folder) if os.path.isdir(os.path.join(test_folder,f))]
img_paths = []
for path in path_sets:
for img_path in glob.glob(os.path.join(path, '*.jpg')):
img_paths.append(img_path)
for img_path in img_paths:
print (img_path)
gt_path = img_path.replace('.jpg','.json')
with open (gt_path,'r') as f:
gt = json.load(f)
anno_list = gt.values()[0]['regions']
img= plt.imread(img_path)
k = np.zeros((360,640))
rate_h = img.shape[0]/360.0
rate_w = img.shape[1]/640.0
for i in range(0,len(anno_list)):
y_anno = min(int(anno_list[i]['shape_attributes']['y']/rate_h),360)
x_anno = min(int(anno_list[i]['shape_attributes']['x']/rate_w),640)
k[y_anno,x_anno]=1
k = gaussian_filter(k,3)
with h5py.File(img_path.replace('.jpg','_resize.h5'), 'w') as hf:
hf['density'] = k
hf.close()