forked from aau-cns/poet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
585 lines (509 loc) · 29.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# ------------------------------------------------------------------------
# PoET: Pose Estimation Transformer for Single-View, Multi-Object 6D Pose Estimation
# Copyright (c) 2022 Thomas Jantos ([email protected]), University of Klagenfurt - Control of Networked Systems (CNS). All Rights Reserved.
# Licensed under the BSD-2-Clause-License with no commercial use [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE_DEFORMABLE_DETR in the LICENSES folder for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import os
import random
import sys
import time
import traceback
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader
import util.misc as utils
import data_utils.samplers as samplers
from data_utils import build_dataset
from engine import train_one_epoch, pose_evaluate, bop_evaluate
from models import build_model
from evaluation_tools.pose_evaluator_init import build_pose_evaluator
from inference_tools.inference_engine import inference
from tabulate import tabulate
from util.logger import warn, err
from CorrectedSummaryWriter import CorrectedSummaryWriter
def get_args_parser():
parser = argparse.ArgumentParser('Pose Estimation Transformer', add_help=False)
# Learning
parser.add_argument('--lr', default=2e-4, type=float)
parser.add_argument('--lr_backbone_names', default=["backbone.0"], type=str, nargs='+')
parser.add_argument('--lr_backbone', default=2e-5, type=float)
parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--eval_batch_size', default=16, type=int, help='Batch size for evaluation')
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr_drop', default=100, type=int)
parser.add_argument('--gamma', default=0.1, type=float)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# * Backbone
parser.add_argument('--backbone', default='yolov4', type=str, choices=['yolov4', 'maskrcnn', 'fasterrcnn', 'dinorcnn', 'dinoyolo'],
help="Name of the convolutional backbone to use")
parser.add_argument('--backbone_cfg', default='configs/ycbv_yolov4-csp.cfg', type=str,
help="Path to the backbone config file to use")
parser.add_argument('--backbone_weights', default=None, type=str,
help="Path to the pretrained weights for the backbone."
"None if no weights should be loaded.")
parser.add_argument('--backbone_conf_thresh', default=0.4, type=float,
help="Backbone confidence threshold which objects to keep.")
parser.add_argument('--backbone_iou_thresh', default=0.5, type=float, help="Backbone IOU threshold for NMS")
parser.add_argument('--backbone_agnostic_nms', action='store_true',
help="Whether backbone NMS should be performed class-agnostic")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
help="position / size * scale")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * DINO BACKBONE
parser.add_argument('--dino_caption', default=None, type=str, help='Caption for Grounding DINO object detection')
parser.add_argument('--dino_args', default="models/groundingdino/config/GroundingDINO_SwinT_OGC.py", type=str, help='Args for Grounding DINO backbone')
parser.add_argument('--dino_checkpoint', default="models/groundingdino/weights/groundingdino_swint_ogc.pth", type=str, help='Checkpoint for Grounding DINO backbone')
parser.add_argument('--dino_box_threshold', default=0.35, type=float, help='Bounding Box threshold for Grounding DINO')
parser.add_argument('--dino_txt_threshold', default=0.25, type=float, help='Text threshold for Grounding DINO')
parser.add_argument('--dino_cos_sim', default=0.9, type=float, help='Cosine similarity for matching Grounding DINO predictions to labels')
parser.add_argument('--dino_bbox_viz', default=False, type=bool, help='Visualize Grounding DINO bounding box predictions and labels')
# ** PoET configs
parser.add_argument('--bbox_mode', default='gt', type=str, choices=('gt', 'backbone', 'jitter'),
help='Defines which bounding boxes should be used for PoET to determine query embeddings.')
parser.add_argument('--reference_points', default='bbox', type=str, choices=('bbox', 'learned'),
help='Defines whether the transformer reference points are learned or extracted from the bounding boxes')
parser.add_argument('--query_embedding', default='bbox', type=str, choices=('bbox', 'learned'),
help='Defines whether the transformer query embeddings are learned or determined by the bounding boxes')
parser.add_argument('--rotation_representation', default='6d', type=str, choices=('6d', 'quat', 'silho_quat'),
help="Determine the rotation representation with which PoET is trained.")
parser.add_argument('--class_mode', default='specific', type=str, choices=('agnostic', 'specific'),
help="Determine whether PoET ist trained class-specific or class-agnostic")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=10, type=int,
help="Number of query slots")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
# * Matcher
parser.add_argument('--matcher_type', default='pose', choices=['pose'], type=str)
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=1, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Loss coefficients
# Pose Estimation losses
parser.add_argument('--translation_loss_coef', default=1, type=float, help='Loss weighing parameter for the translation')
parser.add_argument('--rotation_loss_coef', default=1, type=float, help='Loss weighing parameter for the rotation')
# dataset parameters
parser.add_argument('--dataset', default='ycbv', type=str, choices=('ycbv', 'lmo', 'icmi', 'custom'),
help="Choose the dataset to train/evaluate PoET on.")
parser.add_argument('--dataset_path', default='/data', type=str,
help='Path to the dataset ')
parser.add_argument('--train_set', default="train", type=str, help="Determine on which dataset split to train")
parser.add_argument('--eval_set', default="test", type=str, help="Determine on which dataset split to evaluate")
parser.add_argument('--test_set', default="test", type=str, help="Determine on which dataset split to test")
parser.add_argument('--synt_background', default=None, type=str,
help="Directory containing the background images from which to sample")
parser.add_argument('--n_classes', default=21, type=int, help="Number of classes present in the dataset")
parser.add_argument('--jitter_probability', default=0.5, type=float,
help='If bbox_mode is set to jitter, this value indicates the probability '
'that jitter is applied to a bounding box.')
parser.add_argument('--rgb_augmentation', action='store_true',
help='Activate image augmentation for training pose estimation.')
parser.add_argument('--grayscale', action='store_true', help='Activate grayscale augmentation.')
# * Evaluator
parser.add_argument('--eval_interval', type=int, default=10,
help="Epoch interval after which the current model is evaluated")
parser.add_argument('--class_info', type=str, default='/annotations/classes.json',
help='path to .txt-file containing the class names')
parser.add_argument('--models', type=str, default='/models_eval/',
help='path to a directory containing the classes models')
parser.add_argument('--model_symmetry', type=str, default='/annotations/symmetries.json',
help='path to .json-file containing the class symmetries')
# * Inference
parser.add_argument('--inference', action='store_true',
help="Flag indicating that PoET should be launched in inference mode.")
parser.add_argument('--inference_path', type=str,
help="Path to the directory containing the files for inference.")
parser.add_argument('--inference_output', type=str,
help="Path to the directory where the inference results should be stored.")
# * Misc
parser.add_argument('--sgd', action='store_true')
parser.add_argument('--save_interval', default=5, type=int,
help="Epoch interval after which the current checkpoint will be stored")
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Run model in evaluation mode')
parser.add_argument('--eval_bop', action='store_true', help="Run model in BOP challenge evaluation mode")
parser.add_argument('--test', action='store_true', help="Run model in BOP challenge test mode")
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
# * Distributed training parameters
parser.add_argument('--distributed', action='store_true',
help='Use multi-processing distributed training to launch ')
parser.add_argument('--world_size', default=3, type=int,
help='number of distributed processes/ GPUs to use')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--local_rank', default=0, type=int,
help='rank of the process')
parser.add_argument('--gpu', default=0, type=int, help='rank of the process')
return parser
def main(args):
if args.distributed:
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Build the model and evaluator
model, criterion, matcher = build_model(args)
model.to(device)
pose_evaluator = build_pose_evaluator(args)
model_without_ddp = model
# n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print('number of params:', n_parameters)
# Build the dataset for training and validation
dataset_train = build_dataset(image_set=args.train_set, args=args)
dataset_val = build_dataset(image_set=args.eval_set, args=args)
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
data_loader_val = DataLoader(dataset_val, args.eval_batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
# lr_backbone_names = ["backbone.0", "backbone.neck", "input_proj", "transformer.encoder"]
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
# for n, p in model_without_ddp.named_parameters():
# print(n)
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n,
args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if
match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if
match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
if args.sgd:
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9,
weight_decay=args.weight_decay)
else:
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop, args.gamma)
if args.distributed:
print(f'\nUsing DistributedDataParallel\n')
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
headers = ["Argument", "Value", "Description"]
data = [
["Flags", ""],
["Inference", str(args.inference)],
["Eval", str(args.eval)],
["Eval BOP", str(args.eval_bop)],
["Distributed", str(args.distributed)],
["RGB Augm.", str(args.rgb_augmentation), "Whether to augment training images with RGB transformations."],
["Grayscale Augm.", str(args.grayscale), "Whether to augment training images with Grayscale transformations."],
["", ""],
["Architecture", ""],
["Enc. Layers", str(args.enc_layers)],
["Dec. Layers", str(args.dec_layers)],
["Num. Heads", str(args.nheads)],
["Num. Object Queries", str(args.num_queries), "Number of object queries per image. (Numb. of objects hypothesises per image)"],
["", ""],
["Resume", str(args.resume), "Model checkpoint to resume training of."],
["Backbone", str(args.backbone)],
["BBox Mode", str(args.bbox_mode)],
["Dataset", str(args.dataset)],
["Dataset Path", str(args.dataset_path)],
["N Classes", str(args.n_classes), "Number of total classes/labels."],
["Class Mode", str(args.class_mode)],
["Rot. Reprs.", str(args.rotation_representation)],
["", ""],
["Training", ""],
["Train Set", str(args.train_set)],
["Batch Size", str(args.batch_size)],
["Epochs", str(args.epochs)],
["Learning Rate", str(args.lr)],
["LR. Drop", str(args.lr_drop), "Decays learning rate all 'LR. Drop' epochs by multiplicative of 'Gamma'"],
["Gamma", str(args.gamma), "Multiplicative factor of learning rate drop"],
["Transl. Loss Coef.", str(args.translation_loss_coef), "Weighting of translation loss."],
["Rot. Loss Coef.", str(args.rotation_loss_coef)],
["", ""],
["Eval", ""],
["Eval Batch Size", str(args.eval_batch_size)],
["Eval Set", str(args.eval_set)],
["", ""],
["Test", ""],
["Test Set", str(args.test_set)],
["", ""],
["Inference", ""],
["Inference Path", str(args.inference_path)],
["Inference Output", str(args.inference_output)],
]
print(tabulate(data, headers=headers, tablefmt="rounded_outline"))
print("")
print('Number of params:', n_parameters)
print("")
output_dir = Path(args.output_dir)
if "train" in args.output_dir or "tune" in args.output_dir:
output_dir = Path(os.path.join(output_dir, datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(Path(output_dir, "args.txt"), "w") as f:
f.write(tabulate(data, headers=headers, tablefmt="rounded_outline"))
# Load checkpoint
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
warn(f"There are {len(missing_keys)} missing keys in state_dict!")
# print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
warn(f"There are {len(unexpected_keys)} unexpected keys in state_dict!")
# print('Unexpected Keys: {}'.format(unexpected_keys))
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
# print(optimizer.param_groups)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
# Fallback if gamma was an array previously
if isinstance(lr_scheduler.gamma, list):
lr_scheduler.gamma = lr_scheduler.gamma[0]
# todo: this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler
# (e.g., decrease lr in advance).
args.override_resumed_lr_drop = True
if args.override_resumed_lr_drop:
print(
'Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = args.lr_drop
lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
args.start_epoch = checkpoint['epoch'] + 1
# Evaluate the models performance
if args.eval:
if args.resume:
eval_epoch = checkpoint['epoch']
else:
eval_epoch = None
pose_evaluate(model, matcher, pose_evaluator, data_loader_val, args.eval_set, args.bbox_mode,
args.rotation_representation, device, args.output_dir, eval_epoch)
return
# Evaluate the model for the BOP challenge
if args.eval_bop:
print(args.dataset)
bop_evaluate(model, matcher, data_loader_val, args.eval_set, args.bbox_mode,
args.rotation_representation, device, args.output_dir)
return
print("Start training")
start_time = time.time()
writer = CorrectedSummaryWriter(os.path.join(output_dir))
pose_evaluator.writer = writer
try:
best_loss = sys.float_info.max
epoch = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
start = time.time()
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm)
stop = time.time()
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint_latest.pth']
# extra checkpoint before LR drop and every save_interval epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.save_interval == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
writer.add_scalar('Train/lr', train_stats["lr"], epoch)
writer.add_scalar('Train/loss', train_stats["loss"], epoch)
# (!!) train_stats["loss_trans"] => train_stats["loss_trans_unscaled"] * args.translation_loss_coef (!!)
# writer.add_scalar('Train/loss_trans', train_stats["loss_trans"], epoch)
# (!!) train_stats["position_loss"] = train_stats["loss_trans_unscaled"] (!!)
writer.add_scalar('Train/position_loss', train_stats["position_loss"], epoch)
# (!!) train_stats["loss_rot"] => train_stats["loss_rot_unscaled"] * args.rotation_loss_coef (!!)
# writer.add_scalar('Train/loss_rot', train_stats["loss_rot"], epoch)
# (!!) train_stats["rotation_loss"] = train_stats["loss_rot_unscaled"] (!!)
writer.add_scalar('Train/rotation_loss', train_stats["rotation_loss"], epoch)
writer.add_scalar('Train/times/time_per_epoch', stop - start, epoch)
# Do evaluation on the validation set every n epochs
if epoch % args.eval_interval == 0:
avg_trans_err, avg_rot_err = pose_evaluate(model, matcher, pose_evaluator, data_loader_val, args.eval_set, args.bbox_mode,
args.rotation_representation, device, str(output_dir), epoch)
# Save model if best translation and rotation result
if args.output_dir:
checkpoint_loss = (avg_trans_err + avg_rot_err) / 2
if checkpoint_loss < best_loss:
best_loss = checkpoint_loss
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, output_dir / 'checkpoint.pth')
writer.add_scalar("Val/avg_trans_err", avg_trans_err, epoch)
writer.add_scalar("Val/avg_rot_err", avg_rot_err, epoch)
writer.add_scalar("Val/avg_err", (avg_trans_err + avg_rot_err) / 2, epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
except KeyboardInterrupt as e:
warn(f"Keyboard Interrupt caught!")
warn(f"Logging hyperparameters and doing a final test run ...")
pass
except Exception as e:
err(f"Exception during training: {e}")
traceback.print_exc()
err("Exiting program ...")
test_total_time_str = ""
if args.test_set is not None:
print('Test final trained model')
test_start_time = time.time()
# Switch mode of evaluator to "testing" for tensorboard logging
pose_evaluator.testing = True
dataset_test = build_dataset(image_set=args.test_set, args=args)
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
data_loader_test = DataLoader(dataset_test, args.eval_batch_size, sampler=sampler_test,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
avg_trans_err, avg_rot_err = pose_evaluate(model, matcher, pose_evaluator, data_loader_test, args.test_set, args.bbox_mode,
args.rotation_representation, device, str(output_dir), epoch)
writer.add_scalar("Test/avg_trans_err", avg_trans_err, epoch)
writer.add_scalar("Test/avg_rot_err", avg_rot_err, epoch)
test_total_time = time.time() - test_start_time
test_total_time_str = str(datetime.timedelta(seconds=int(test_total_time)))
print('Testing time {}'.format(test_total_time_str))
else:
print("Cannot test model because args.test_set is None! Skipping testing ...")
# Log Hyperparameters
writer.add_hparams(
{
"Batch Size": args.eval_batch_size,
"Eval Batch Size": args.eval_batch_size,
"Learning Rate": args.lr,
"Transl. Loss Coef.": args.translation_loss_coef,
"Rot. Loss Coef.": args.rotation_loss_coef,
"Enc. Layers": args.enc_layers,
"Dec. Layers": args.dec_layers,
"Number Heads": args.nheads,
"Number Object Queries": args.num_queries,
"RGB Augmentation": args.rgb_augmentation,
"Grayscale Augmentation": args.grayscale,
},
{
"Test/avg_rot_err": avg_rot_err,
"Test/avg_trans_err": avg_trans_err,
}
)
writer.close()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
# Log execution times to file
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
obj = {
"training_time": total_time_str,
"test_total_time": test_total_time_str,
}
f.write(json.dumps(obj) + "\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser('PoET training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
if args.inference:
args.bbox_mode = "backbone"
inference(args)
else:
main(args)