-
Notifications
You must be signed in to change notification settings - Fork 134
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
No Learning for NiN on cifar10 #15
Comments
Seems it is an issue related to your net and solver? Copy them here might help. |
Thanks for your reply, `name: "MNIST_NiN" layer { layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param {
} param {
} convolution_param {
} layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "cccp1" type: "Convolution" bottom: "conv1" top: "cccp1"
} param {
} convolution_param {
group: 1
weight_filler { } } layer { name: "relu_cccp1" type: "ReLU" bottom: "cccp1" top: "cccp1" } layer { name: "cccp2" type: "Convolution" bottom: "cccp1" top: "cccp2"
} param {
} convolution_param {
} } layer { name: "relu_cccp2" type: "ReLU" bottom: "cccp2" top: "cccp2" } layer { name: "pool1" type: "Pooling" bottom: "cccp2" top: "pool1" pooling_param {
} } layer { name: "drop3" type: "Dropout" bottom: "pool1" top: "pool1" dropout_param {
} } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param {
} param {
} convolution_param {
} } layer { name: "relu2_1" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "cccp3" type: "Convolution" bottom: "conv2" top: "cccp3" param {
} param {
} convolution_param {
group: 1 weight_filler { } } layer { name: "relu_cccp3" type: "ReLU" bottom: "cccp3" top: "cccp3" } layer { name: "cccp4" type: "Convolution" bottom: "cccp3" top: "cccp4" param {
} param {
} convolution_param {
} } layer { name: "relu_cccp4" type: "ReLU" bottom: "cccp4" top: "cccp4" } layer { name: "pool2" type: "Pooling" bottom: "cccp4" top: "pool2" pooling_param {
} } layer { name: "drop6" type: "Dropout" bottom: "pool2" top: "pool2" dropout_param {
} } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param {
} param {
} convolution_param {
} } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "cccp5" type: "Convolution" bottom: "conv3" top: "cccp5" param {
} param {
} convolution_param {
weight_filler { } } layer { name: "relu_cccp5" type: "ReLU" bottom: "cccp5" top: "cccp5" } layer { name: "cccp6" type: "Convolution" bottom: "cccp5" top: "cccp6" param {
} param {
} convolution_param {
weight_filler { } } layer { name: "relu_cccp6" type: "ReLU" bottom: "cccp6" top: "cccp6" } layer { name: "pool3" type: "Pooling" bottom: "cccp6" top: "pool3" pooling_param {
} } layer { layer {
|
Issue summary
When I define my network according to Network in Network architecture without using SSL regularization (similar to lenet_train_test.prototxt, which no SSL regularization has been used), the network can not train, however I played with LR and weight decays. Loss value during the training iterations is always constant value : Train net output #0: loss = 2.30259 (* 1 = 2.30259 loss)
Could you please help me with that?
Steps to reproduce
I am using docker container and here is my Dockerfile, which the image has been built from it:
`FROM nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04
LABEL maintainer [email protected]
RUN apt-get update && apt-get install -y --no-install-recommends
build-essential
cmake
git
wget
libatlas-base-dev
libboost-all-dev
libgflags-dev
libgoogle-glog-dev
libhdf5-serial-dev
libleveldb-dev
liblmdb-dev
libopencv-dev
libprotobuf-dev
libsnappy-dev
protobuf-compiler
python-dev
python-numpy
python-pip
python-setuptools
python-scipy &&
rm -rf /var/lib/apt/lists/*
ENV CAFFE_ROOT=/opt/caffe
WORKDIR $CAFFE_ROOT
ENV CLONE_TAG=1.0
RUN git clone -b scnn --depth 1 https://github.com/wenwei202/caffe.git . &&
pip install --upgrade pip &&
cd python && for req in $(cat requirements.txt) pydot; do pip install $req; done && cd .. &&
git clone https://github.com/NVIDIA/nccl.git && cd nccl && make -j install && cd .. && rm -rf nccl
#mkdir build && cd build &&
#cmake .. && \
RUN cp Makefile.config.example Makefile.config &&
echo 'INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/' >>./Makefile.config &&
echo 'LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/' >>./Makefile.config &&
make -j"$(nproc)" &&
make pycaffe -j"$(nproc)"
RUN pip install lmdb
ENV PYCAFFE_ROOT $CAFFE_ROOT/python
ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH
ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH
RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig
WORKDIR /workspace
`
Your system configuration
Operating system: Ubuntu 16.04 LTS
Compiler:
CUDA version (if applicable): V8.0.61
CUDNN version (if applicable):
BLAS: I can not find it by grep OPENBLAS_VERSION /usr/local/include/openblas_config.h
Python or MATLAB version (for pycaffe and matcaffe respectively): python 2.7
The text was updated successfully, but these errors were encountered: