forked from udacity/CarND-Vehicle-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsqueezenet.py
96 lines (83 loc) · 5.73 KB
/
squeezenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from keras.models import Model
from keras.layers import Input, Activation, Concatenate
from keras.layers import Flatten, Dropout
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import AveragePooling2D
def SqueezeNet(nb_classes, inputs=(224, 224, 3)):
""" Keras Implementation of SqueezeNet(arXiv 1602.07360)
@param nb_classes: total number of final categories
Arguments:
inputs -- shape of the input images (channel, cols, rows)
"""
input_img = Input(shape=inputs)
conv1 = Convolution2D(96, (7, 7), activation='relu', kernel_initializer='glorot_uniform',
strides=(2, 2), padding='same', name='conv1')(input_img)
maxpool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='maxpool1',)(conv1)
fire2_squeeze = Convolution2D(16, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire2_squeeze')(maxpool1)
fire2_expand1 = Convolution2D(64, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire2_expand1')(fire2_squeeze)
fire2_expand2 = Convolution2D(64, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire2_expand2')(fire2_squeeze)
merge2 = Concatenate(axis=1)([fire2_expand1, fire2_expand2])
fire3_squeeze = Convolution2D(16, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire3_squeeze')(merge2)
fire3_expand1 = Convolution2D(64, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire3_expand1')(fire3_squeeze)
fire3_expand2 = Convolution2D(64, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire3_expand2')(fire3_squeeze)
merge3 = Concatenate(axis=1)([fire3_expand1, fire3_expand2])
fire4_squeeze = Convolution2D(32, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire4_squeeze')(merge3)
fire4_expand1 = Convolution2D(128, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire4_expand1')(fire4_squeeze)
fire4_expand2 = Convolution2D(128, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire4_expand2')(fire4_squeeze)
merge4 = Concatenate(axis=1)([fire4_expand1, fire4_expand2])
maxpool4 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='maxpool4')(merge4)
fire5_squeeze = Convolution2D(32, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire5_squeeze')(maxpool4)
fire5_expand1 = Convolution2D(128, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire5_expand1')(fire5_squeeze)
fire5_expand2 = Convolution2D(128, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire5_expand2',)(fire5_squeeze)
merge5 = Concatenate(axis=1)([fire5_expand1, fire5_expand2])
fire6_squeeze = Convolution2D(48, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire6_squeeze')(merge5)
fire6_expand1 = Convolution2D(192, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire6_expand1')(fire6_squeeze)
fire6_expand2 = Convolution2D(192, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire6_expand2')(fire6_squeeze)
merge6 = Concatenate(axis=1)([fire6_expand1, fire6_expand2])
fire7_squeeze = Convolution2D(48, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire7_squeeze')(merge6)
fire7_expand1 = Convolution2D(192, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire7_expand1')(fire7_squeeze)
fire7_expand2 = Convolution2D(192, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire7_expand2')(fire7_squeeze)
merge7 = Concatenate(axis=1)([fire7_expand1, fire7_expand2])
fire8_squeeze = Convolution2D(64, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire8_squeeze')(merge7)
fire8_expand1 = Convolution2D(256, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire8_expand1')(fire8_squeeze)
fire8_expand2 = Convolution2D(256, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire8_expand2')(fire8_squeeze)
merge8 = Concatenate(axis=1)([fire8_expand1, fire8_expand2])
maxpool8 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='maxpool8')(merge8)
fire9_squeeze = Convolution2D(64, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire9_squeeze')(maxpool8)
fire9_expand1 = Convolution2D(256, (1, 1), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire9_expand1')(fire9_squeeze)
fire9_expand2 = Convolution2D(256, (3, 3), activation='relu', kernel_initializer='glorot_uniform',
padding='same', name='fire9_expand2')(fire9_squeeze)
merge9 = Concatenate(axis=1)([fire9_expand1, fire9_expand2])
fire9_dropout = Dropout(0.5, name='fire9_dropout')(merge9)
conv10 = Convolution2D(nb_classes, (1, 1), kernel_initializer='glorot_uniform',
padding='valid', name='conv10')(fire9_dropout)
# The size should match the output of conv10
avgpool10 = AveragePooling2D(
(13, 13), name='avgpool10',
data_format="channels_first")(conv10)
flatten = Flatten(name='flatten')(avgpool10)
softmax = Activation("softmax", name='softmax')(flatten)
return Model(inputs=input_img, outputs=softmax)