-
-
Notifications
You must be signed in to change notification settings - Fork 193
/
Copy pathapp.py
707 lines (591 loc) · 25.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
import asyncio
import logging
import queue
import threading
import urllib.request
from pathlib import Path
from typing import List, NamedTuple
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal # type: ignore
import av
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pydub
import streamlit as st
from aiortc.contrib.media import MediaPlayer
from streamlit_webrtc import (
AudioProcessorBase,
RTCConfiguration,
VideoProcessorBase,
WebRtcMode,
webrtc_streamer,
)
HERE = Path(__file__).parent
logger = logging.getLogger(__name__)
# This code is based on https://github.com/streamlit/demo-self-driving/blob/230245391f2dda0cb464008195a470751c01770b/streamlit_app.py#L48 # noqa: E501
def download_file(url, download_to: Path, expected_size=None):
# Don't download the file twice.
# (If possible, verify the download using the file length.)
if download_to.exists():
if expected_size:
if download_to.stat().st_size == expected_size:
return
else:
st.info(f"{url} is already downloaded.")
if not st.button("Download again?"):
return
download_to.parent.mkdir(parents=True, exist_ok=True)
# These are handles to two visual elements to animate.
weights_warning, progress_bar = None, None
try:
weights_warning = st.warning("Downloading %s..." % url)
progress_bar = st.progress(0)
with open(download_to, "wb") as output_file:
with urllib.request.urlopen(url) as response:
length = int(response.info()["Content-Length"])
counter = 0.0
MEGABYTES = 2.0 ** 20.0
while True:
data = response.read(8192)
if not data:
break
counter += len(data)
output_file.write(data)
# We perform animation by overwriting the elements.
weights_warning.warning(
"Downloading %s... (%6.2f/%6.2f MB)"
% (url, counter / MEGABYTES, length / MEGABYTES)
)
progress_bar.progress(min(counter / length, 1.0))
# Finally, we remove these visual elements by calling .empty().
finally:
if weights_warning is not None:
weights_warning.empty()
if progress_bar is not None:
progress_bar.empty()
RTC_CONFIGURATION = RTCConfiguration(
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
)
def main():
st.header("WebRTC demo")
pages = {
"Real time object detection (sendrecv)": app_object_detection,
"Real time video transform with simple OpenCV filters (sendrecv)": app_video_filters, # noqa: E501
"Real time audio filter (sendrecv)": app_audio_filter,
"Delayed echo (sendrecv)": app_delayed_echo,
"Consuming media files on server-side and streaming it to browser (recvonly)": app_streaming, # noqa: E501
"WebRTC is sendonly and images are shown via st.image() (sendonly)": app_sendonly_video, # noqa: E501
"WebRTC is sendonly and audio frames are visualized with matplotlib (sendonly)": app_sendonly_audio, # noqa: E501
"Simple video and audio loopback (sendrecv)": app_loopback,
"Configure media constraints and HTML element styles with loopback (sendrecv)": app_media_constraints, # noqa: E501
"Control the playing state programatically": app_programatically_play,
"Customize UI texts": app_customize_ui_texts,
}
page_titles = pages.keys()
page_title = st.sidebar.selectbox(
"Choose the app mode",
page_titles,
)
st.subheader(page_title)
page_func = pages[page_title]
page_func()
st.sidebar.markdown(
"""
---
<a href="https://www.buymeacoffee.com/whitphx" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" width="180" height="50" ></a>
""", # noqa: E501
unsafe_allow_html=True,
)
logger.debug("=== Alive threads ===")
for thread in threading.enumerate():
if thread.is_alive():
logger.debug(f" {thread.name} ({thread.ident})")
def app_loopback():
"""Simple video loopback"""
webrtc_streamer(key="loopback")
def app_video_filters():
"""Video transforms with OpenCV"""
class OpenCVVideoProcessor(VideoProcessorBase):
type: Literal["noop", "cartoon", "edges", "rotate"]
def __init__(self) -> None:
self.type = "noop"
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
img = frame.to_ndarray(format="bgr24")
if self.type == "noop":
pass
elif self.type == "cartoon":
# prepare color
img_color = cv2.pyrDown(cv2.pyrDown(img))
for _ in range(6):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
# prepare edges
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_edges = cv2.adaptiveThreshold(
cv2.medianBlur(img_edges, 7),
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
9,
2,
)
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
# combine color and edges
img = cv2.bitwise_and(img_color, img_edges)
elif self.type == "edges":
# perform edge detection
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
elif self.type == "rotate":
# rotate image
rows, cols, _ = img.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
img = cv2.warpAffine(img, M, (cols, rows))
return av.VideoFrame.from_ndarray(img, format="bgr24")
webrtc_ctx = webrtc_streamer(
key="opencv-filter",
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
video_processor_factory=OpenCVVideoProcessor,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
if webrtc_ctx.video_processor:
webrtc_ctx.video_processor.type = st.radio(
"Select transform type", ("noop", "cartoon", "edges", "rotate")
)
st.markdown(
"This demo is based on "
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
"Many thanks to the project."
)
def app_audio_filter():
DEFAULT_GAIN = 1.0
class AudioProcessor(AudioProcessorBase):
gain = DEFAULT_GAIN
def recv(self, frame: av.AudioFrame) -> av.AudioFrame:
raw_samples = frame.to_ndarray()
sound = pydub.AudioSegment(
data=raw_samples.tobytes(),
sample_width=frame.format.bytes,
frame_rate=frame.sample_rate,
channels=len(frame.layout.channels),
)
sound = sound.apply_gain(self.gain)
# Ref: https://github.com/jiaaro/pydub/blob/master/API.markdown#audiosegmentget_array_of_samples # noqa
channel_sounds = sound.split_to_mono()
channel_samples = [s.get_array_of_samples() for s in channel_sounds]
new_samples: np.ndarray = np.array(channel_samples).T
new_samples = new_samples.reshape(raw_samples.shape)
new_frame = av.AudioFrame.from_ndarray(
new_samples, layout=frame.layout.name
)
new_frame.sample_rate = frame.sample_rate
return new_frame
webrtc_ctx = webrtc_streamer(
key="audio-filter",
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
audio_processor_factory=AudioProcessor,
async_processing=True,
)
if webrtc_ctx.audio_processor:
webrtc_ctx.audio_processor.gain = st.slider(
"Gain", -10.0, +20.0, DEFAULT_GAIN, 0.05
)
def app_delayed_echo():
DEFAULT_DELAY = 1.0
class VideoProcessor(VideoProcessorBase):
delay = DEFAULT_DELAY
async def recv_queued(self, frames: List[av.VideoFrame]) -> List[av.VideoFrame]:
logger.debug("Delay:", self.delay)
await asyncio.sleep(self.delay)
return frames
class AudioProcessor(AudioProcessorBase):
delay = DEFAULT_DELAY
async def recv_queued(self, frames: List[av.AudioFrame]) -> List[av.AudioFrame]:
await asyncio.sleep(self.delay)
return frames
webrtc_ctx = webrtc_streamer(
key="delay",
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
video_processor_factory=VideoProcessor,
audio_processor_factory=AudioProcessor,
async_processing=True,
)
if webrtc_ctx.video_processor and webrtc_ctx.audio_processor:
delay = st.slider("Delay", 0.0, 5.0, DEFAULT_DELAY, 0.05)
webrtc_ctx.video_processor.delay = delay
webrtc_ctx.audio_processor.delay = delay
def app_object_detection():
"""Object detection demo with MobileNet SSD.
This model and code are based on
https://github.com/robmarkcole/object-detection-app
"""
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
MODEL_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.caffemodel"
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
PROTOTXT_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.prototxt.txt"
CLASSES = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
class Detection(NamedTuple):
name: str
prob: float
class MobileNetSSDVideoProcessor(VideoProcessorBase):
confidence_threshold: float
result_queue: "queue.Queue[List[Detection]]"
def __init__(self) -> None:
self._net = cv2.dnn.readNetFromCaffe(
str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH)
)
self.confidence_threshold = DEFAULT_CONFIDENCE_THRESHOLD
self.result_queue = queue.Queue()
def _annotate_image(self, image, detections):
# loop over the detections
(h, w) = image.shape[:2]
result: List[Detection] = []
for i in np.arange(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > self.confidence_threshold:
# extract the index of the class label from the `detections`,
# then compute the (x, y)-coordinates of the bounding box for
# the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
name = CLASSES[idx]
result.append(Detection(name=name, prob=float(confidence)))
# display the prediction
label = f"{name}: {round(confidence * 100, 2)}%"
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(
image,
label,
(startX, y),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
COLORS[idx],
2,
)
return image, result
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
blob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
)
self._net.setInput(blob)
detections = self._net.forward()
annotated_image, result = self._annotate_image(image, detections)
# NOTE: This `recv` method is called in another thread,
# so it must be thread-safe.
self.result_queue.put(result)
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
webrtc_ctx = webrtc_streamer(
key="object-detection",
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
video_processor_factory=MobileNetSSDVideoProcessor,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
confidence_threshold = st.slider(
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
)
if webrtc_ctx.video_processor:
webrtc_ctx.video_processor.confidence_threshold = confidence_threshold
if st.checkbox("Show the detected labels", value=True):
if webrtc_ctx.state.playing:
labels_placeholder = st.empty()
# NOTE: The video transformation with object detection and
# this loop displaying the result labels are running
# in different threads asynchronously.
# Then the rendered video frames and the labels displayed here
# are not strictly synchronized.
while True:
if webrtc_ctx.video_processor:
try:
result = webrtc_ctx.video_processor.result_queue.get(
timeout=1.0
)
except queue.Empty:
result = None
labels_placeholder.table(result)
else:
break
st.markdown(
"This demo uses a model and code from "
"https://github.com/robmarkcole/object-detection-app. "
"Many thanks to the project."
)
def app_streaming():
"""Media streamings"""
MEDIAFILES = {
"big_buck_bunny_720p_2mb.mp4 (local)": {
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", # noqa: E501
"local_file_path": HERE / "data/big_buck_bunny_720p_2mb.mp4",
"type": "video",
},
"big_buck_bunny_720p_10mb.mp4 (local)": {
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_10mb.mp4", # noqa: E501
"local_file_path": HERE / "data/big_buck_bunny_720p_10mb.mp4",
"type": "video",
},
"file_example_MP3_700KB.mp3 (local)": {
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_700KB.mp3", # noqa: E501
"local_file_path": HERE / "data/file_example_MP3_700KB.mp3",
"type": "audio",
},
"file_example_MP3_5MG.mp3 (local)": {
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_5MG.mp3", # noqa: E501
"local_file_path": HERE / "data/file_example_MP3_5MG.mp3",
"type": "audio",
},
"rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov": {
"url": "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov",
"type": "video",
},
}
media_file_label = st.radio(
"Select a media source to stream", tuple(MEDIAFILES.keys())
)
media_file_info = MEDIAFILES[media_file_label]
if "local_file_path" in media_file_info:
download_file(media_file_info["url"], media_file_info["local_file_path"])
def create_player():
if "local_file_path" in media_file_info:
return MediaPlayer(str(media_file_info["local_file_path"]))
else:
return MediaPlayer(media_file_info["url"])
# NOTE: To stream the video from webcam, use the code below.
# return MediaPlayer(
# "1:none",
# format="avfoundation",
# options={"framerate": "30", "video_size": "1280x720"},
# )
class OpenCVVideoProcessor(VideoProcessorBase):
type: Literal["noop", "cartoon", "edges", "rotate"]
def __init__(self) -> None:
self.type = "noop"
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
img = frame.to_ndarray(format="bgr24")
if self.type == "noop":
pass
elif self.type == "cartoon":
# prepare color
img_color = cv2.pyrDown(cv2.pyrDown(img))
for _ in range(6):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
# prepare edges
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_edges = cv2.adaptiveThreshold(
cv2.medianBlur(img_edges, 7),
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
9,
2,
)
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
# combine color and edges
img = cv2.bitwise_and(img_color, img_edges)
elif self.type == "edges":
# perform edge detection
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
elif self.type == "rotate":
# rotate image
rows, cols, _ = img.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
img = cv2.warpAffine(img, M, (cols, rows))
return av.VideoFrame.from_ndarray(img, format="bgr24")
webrtc_ctx = webrtc_streamer(
key=f"media-streaming-{media_file_label}",
mode=WebRtcMode.RECVONLY,
rtc_configuration=RTC_CONFIGURATION,
media_stream_constraints={
"video": media_file_info["type"] == "video",
"audio": media_file_info["type"] == "audio",
},
player_factory=create_player,
video_processor_factory=OpenCVVideoProcessor,
)
if media_file_info["type"] == "video" and webrtc_ctx.video_processor:
webrtc_ctx.video_processor.type = st.radio(
"Select transform type", ("noop", "cartoon", "edges", "rotate")
)
st.markdown(
"The video filter in this demo is based on "
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
"Many thanks to the project."
)
def app_sendonly_video():
"""A sample to use WebRTC in sendonly mode to transfer frames
from the browser to the server and to render frames via `st.image`."""
webrtc_ctx = webrtc_streamer(
key="video-sendonly",
mode=WebRtcMode.SENDONLY,
rtc_configuration=RTC_CONFIGURATION,
media_stream_constraints={"video": True},
)
image_place = st.empty()
while True:
if webrtc_ctx.video_receiver:
try:
video_frame = webrtc_ctx.video_receiver.get_frame(timeout=1)
except queue.Empty:
logger.warning("Queue is empty. Abort.")
break
img_rgb = video_frame.to_ndarray(format="rgb24")
image_place.image(img_rgb)
else:
logger.warning("AudioReciver is not set. Abort.")
break
def app_sendonly_audio():
"""A sample to use WebRTC in sendonly mode to transfer audio frames
from the browser to the server and visualize them with matplotlib
and `st.pyplot`."""
webrtc_ctx = webrtc_streamer(
key="sendonly-audio",
mode=WebRtcMode.SENDONLY,
audio_receiver_size=256,
rtc_configuration=RTC_CONFIGURATION,
media_stream_constraints={"audio": True},
)
fig_place = st.empty()
fig, [ax_time, ax_freq] = plt.subplots(
2, 1, gridspec_kw={"top": 1.5, "bottom": 0.2}
)
sound_window_len = 5000 # 5s
sound_window_buffer = None
while True:
if webrtc_ctx.audio_receiver:
try:
audio_frames = webrtc_ctx.audio_receiver.get_frames(timeout=1)
except queue.Empty:
logger.warning("Queue is empty. Abort.")
break
sound_chunk = pydub.AudioSegment.empty()
for audio_frame in audio_frames:
sound = pydub.AudioSegment(
data=audio_frame.to_ndarray().tobytes(),
sample_width=audio_frame.format.bytes,
frame_rate=audio_frame.sample_rate,
channels=len(audio_frame.layout.channels),
)
sound_chunk += sound
if len(sound_chunk) > 0:
if sound_window_buffer is None:
sound_window_buffer = pydub.AudioSegment.silent(
duration=sound_window_len
)
sound_window_buffer += sound_chunk
if len(sound_window_buffer) > sound_window_len:
sound_window_buffer = sound_window_buffer[-sound_window_len:]
if sound_window_buffer:
# Ref: https://own-search-and-study.xyz/2017/10/27/python%E3%82%92%E4%BD%BF%E3%81%A3%E3%81%A6%E9%9F%B3%E5%A3%B0%E3%83%87%E3%83%BC%E3%82%BF%E3%81%8B%E3%82%89%E3%82%B9%E3%83%9A%E3%82%AF%E3%83%88%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%A0%E3%82%92%E4%BD%9C/ # noqa
sound_window_buffer = sound_window_buffer.set_channels(
1
) # Stereo to mono
sample = np.array(sound_window_buffer.get_array_of_samples())
ax_time.cla()
times = (np.arange(-len(sample), 0)) / sound_window_buffer.frame_rate
ax_time.plot(times, sample)
ax_time.set_xlabel("Time")
ax_time.set_ylabel("Magnitude")
spec = np.fft.fft(sample)
freq = np.fft.fftfreq(sample.shape[0], 1.0 / sound_chunk.frame_rate)
freq = freq[: int(freq.shape[0] / 2)]
spec = spec[: int(spec.shape[0] / 2)]
spec[0] = spec[0] / 2
ax_freq.cla()
ax_freq.plot(freq, np.abs(spec))
ax_freq.set_xlabel("Frequency")
ax_freq.set_yscale("log")
ax_freq.set_ylabel("Magnitude")
fig_place.pyplot(fig)
else:
logger.warning("AudioReciver is not set. Abort.")
break
def app_media_constraints():
"""A sample to configure MediaStreamConstraints object"""
frame_rate = 5
webrtc_streamer(
key="media-constraints",
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
media_stream_constraints={
"video": {"frameRate": {"ideal": frame_rate}},
},
video_html_attrs={
"style": {"width": "50%", "margin": "0 auto", "border": "5px yellow solid"},
"controls": False,
"autoPlay": True,
},
)
st.write(f"The frame rate is set as {frame_rate}. Video style is changed.")
def app_programatically_play():
"""A sample of controlling the playing state from Python."""
playing = st.checkbox("Playing", value=True)
webrtc_streamer(
key="programatic_control",
desired_playing_state=playing,
mode=WebRtcMode.SENDRECV,
rtc_configuration=RTC_CONFIGURATION,
)
def app_customize_ui_texts():
webrtc_streamer(
key="custom_ui_texts",
rtc_configuration=RTC_CONFIGURATION,
translations={
"start": "開始",
"stop": "停止",
"select_device": "デバイス選択",
"media_api_not_available": "Media APIが利用できない環境です",
"device_ask_permission": "メディアデバイスへのアクセスを許可してください",
"device_not_available": "メディアデバイスを利用できません",
"device_access_denied": "メディアデバイスへのアクセスが拒否されました",
},
)
if __name__ == "__main__":
import os
DEBUG = os.environ.get("DEBUG", "false").lower() not in ["false", "no", "0"]
logging.basicConfig(
format="[%(asctime)s] %(levelname)7s from %(name)s in %(pathname)s:%(lineno)d: "
"%(message)s",
force=True,
)
logger.setLevel(level=logging.DEBUG if DEBUG else logging.INFO)
st_webrtc_logger = logging.getLogger("streamlit_webrtc")
st_webrtc_logger.setLevel(logging.DEBUG)
fsevents_logger = logging.getLogger("fsevents")
fsevents_logger.setLevel(logging.WARNING)
main()